Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
6357 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{5}M_{7}$ + ${ }M_{3}M_{8}$ + ${ }M_{2}^{2}$ + ${ }M_{9}q_{1}\tilde{q}_{2}$ | 0.6489 | 0.8546 | 0.7592 | [M:[0.9323, 1.0, 1.1908, 0.7415, 1.2585, 0.7754, 0.7415, 0.8092, 0.6739], q:[0.5677, 0.5], qb:[0.2415, 0.7585], phi:[0.4831]] | [M:[[-8], [0], [-7], [-1], [1], [3], [-1], [7], [-9]], q:[[8], [0]], qb:[[-1], [1]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{9}$, ${ }M_{4}$, ${ }M_{7}$, ${ }M_{6}$, ${ }M_{8}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{9}^{2}$, ${ }M_{4}M_{9}$, ${ }M_{7}M_{9}$, ${ }M_{6}M_{9}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{8}M_{9}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}M_{6}$, ${ }M_{6}M_{7}$, ${ }M_{6}^{2}$, ${ }M_{4}M_{8}$, ${ }M_{7}M_{8}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{6}M_{8}$, ${ }M_{1}M_{9}$, ${ }M_{8}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{9}\phi_{1}^{2}$, ${ }M_{9}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{1}M_{7}$, ${ }M_{2}M_{9}$, ${ }M_{1}M_{6}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{7}$, ${ }M_{1}M_{8}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{6}$, ${ }M_{8}\phi_{1}^{2}$, ${ }M_{8}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}M_{8}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}^{3}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{4}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{9}\phi_{1}q_{1}\tilde{q}_{1}$ | ${}$ | -3 | t^2.022 + 2*t^2.225 + t^2.326 + t^2.428 + t^2.797 + 2*t^2.899 + t^3. + t^3.877 + t^4.043 + 2*t^4.246 + t^4.348 + 5*t^4.449 + 2*t^4.551 + 4*t^4.652 + t^4.754 + t^4.819 + 2*t^4.855 + 2*t^4.92 + 2*t^5.022 + 5*t^5.123 + 4*t^5.225 + 3*t^5.326 + t^5.428 + t^5.594 + 2*t^5.696 + 3*t^5.797 + 2*t^5.899 - 3*t^6. + t^6.065 + t^6.101 - t^6.203 + 2*t^6.268 + t^6.304 + t^6.369 + 4*t^6.471 + t^6.572 + 8*t^6.674 + 4*t^6.775 + t^6.84 + 8*t^6.877 + 2*t^6.942 + 2*t^6.978 + 2*t^7.043 + 5*t^7.08 + 5*t^7.145 + 2*t^7.181 + 5*t^7.246 + 2*t^7.283 + 11*t^7.348 + 7*t^7.449 + 6*t^7.551 + t^7.616 + 4*t^7.652 + 2*t^7.717 + 4*t^7.754 + 4*t^7.819 + t^7.855 + 5*t^7.92 - t^7.957 + 4*t^8.022 + t^8.087 + 6*t^8.123 - 5*t^8.225 + 2*t^8.29 - t^8.326 + 2*t^8.391 - 8*t^8.428 + 6*t^8.493 - t^8.529 + 5*t^8.594 - 2*t^8.631 + 10*t^8.696 + 2*t^8.732 + t^8.862 + 4*t^8.899 + 2*t^8.963 - t^4.449/y - t^6.471/y - t^6.674/y - t^6.775/y + t^7.246/y + (2*t^7.449)/y + (3*t^7.551)/y + (3*t^7.652)/y + t^7.754/y + t^7.819/y + (2*t^7.92)/y + (3*t^8.022)/y + (6*t^8.123)/y + (6*t^8.225)/y + (3*t^8.326)/y + (2*t^8.428)/y - t^8.493/y + t^8.696/y + t^8.797/y + (2*t^8.899)/y - t^4.449*y - t^6.471*y - t^6.674*y - t^6.775*y + t^7.246*y + 2*t^7.449*y + 3*t^7.551*y + 3*t^7.652*y + t^7.754*y + t^7.819*y + 2*t^7.92*y + 3*t^8.022*y + 6*t^8.123*y + 6*t^8.225*y + 3*t^8.326*y + 2*t^8.428*y - t^8.493*y + t^8.696*y + t^8.797*y + 2*t^8.899*y | t^2.022/g1^9 + (2*t^2.225)/g1 + g1^3*t^2.326 + g1^7*t^2.428 + t^2.797/g1^8 + (2*t^2.899)/g1^4 + t^3. + g1^5*t^3.877 + t^4.043/g1^18 + (2*t^4.246)/g1^10 + t^4.348/g1^6 + (5*t^4.449)/g1^2 + 2*g1^2*t^4.551 + 4*g1^6*t^4.652 + g1^10*t^4.754 + t^4.819/g1^17 + 2*g1^14*t^4.855 + (2*t^4.92)/g1^13 + (2*t^5.022)/g1^9 + (5*t^5.123)/g1^5 + (4*t^5.225)/g1 + 3*g1^3*t^5.326 + g1^7*t^5.428 + t^5.594/g1^16 + (2*t^5.696)/g1^12 + (3*t^5.797)/g1^8 + (2*t^5.899)/g1^4 - 3*t^6. + t^6.065/g1^27 + g1^4*t^6.101 - g1^8*t^6.203 + (2*t^6.268)/g1^19 + g1^12*t^6.304 + t^6.369/g1^15 + (4*t^6.471)/g1^11 + t^6.572/g1^7 + (8*t^6.674)/g1^3 + 4*g1*t^6.775 + t^6.84/g1^26 + 8*g1^5*t^6.877 + (2*t^6.942)/g1^22 + 2*g1^9*t^6.978 + (2*t^7.043)/g1^18 + 5*g1^13*t^7.08 + (5*t^7.145)/g1^14 + 2*g1^17*t^7.181 + (5*t^7.246)/g1^10 + 2*g1^21*t^7.283 + (11*t^7.348)/g1^6 + (7*t^7.449)/g1^2 + 6*g1^2*t^7.551 + t^7.616/g1^25 + 4*g1^6*t^7.652 + (2*t^7.717)/g1^21 + 4*g1^10*t^7.754 + (4*t^7.819)/g1^17 + g1^14*t^7.855 + (5*t^7.92)/g1^13 - g1^18*t^7.957 + (4*t^8.022)/g1^9 + t^8.087/g1^36 + (6*t^8.123)/g1^5 - (5*t^8.225)/g1 + (2*t^8.29)/g1^28 - g1^3*t^8.326 + (2*t^8.391)/g1^24 - 8*g1^7*t^8.428 + (6*t^8.493)/g1^20 - g1^11*t^8.529 + (5*t^8.594)/g1^16 - 2*g1^15*t^8.631 + (10*t^8.696)/g1^12 + 2*g1^19*t^8.732 + t^8.862/g1^35 + (4*t^8.899)/g1^4 + (2*t^8.963)/g1^31 - t^4.449/(g1^2*y) - t^6.471/(g1^11*y) - t^6.674/(g1^3*y) - (g1*t^6.775)/y + t^7.246/(g1^10*y) + (2*t^7.449)/(g1^2*y) + (3*g1^2*t^7.551)/y + (3*g1^6*t^7.652)/y + (g1^10*t^7.754)/y + t^7.819/(g1^17*y) + (2*t^7.92)/(g1^13*y) + (3*t^8.022)/(g1^9*y) + (6*t^8.123)/(g1^5*y) + (6*t^8.225)/(g1*y) + (3*g1^3*t^8.326)/y + (2*g1^7*t^8.428)/y - t^8.493/(g1^20*y) + t^8.696/(g1^12*y) + t^8.797/(g1^8*y) + (2*t^8.899)/(g1^4*y) - (t^4.449*y)/g1^2 - (t^6.471*y)/g1^11 - (t^6.674*y)/g1^3 - g1*t^6.775*y + (t^7.246*y)/g1^10 + (2*t^7.449*y)/g1^2 + 3*g1^2*t^7.551*y + 3*g1^6*t^7.652*y + g1^10*t^7.754*y + (t^7.819*y)/g1^17 + (2*t^7.92*y)/g1^13 + (3*t^8.022*y)/g1^9 + (6*t^8.123*y)/g1^5 + (6*t^8.225*y)/g1 + 3*g1^3*t^8.326*y + 2*g1^7*t^8.428*y - (t^8.493*y)/g1^20 + (t^8.696*y)/g1^12 + (t^8.797*y)/g1^8 + (2*t^8.899*y)/g1^4 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
4762 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{5}M_{7}$ + ${ }M_{3}M_{8}$ + ${ }M_{2}^{2}$ | 0.628 | 0.8135 | 0.772 | [M:[0.9348, 1.0, 1.1929, 0.7418, 1.2582, 0.7745, 0.7418, 0.8071], q:[0.5652, 0.5], qb:[0.2418, 0.7582], phi:[0.4837]] | 2*t^2.226 + t^2.323 + t^2.421 + t^2.804 + 2*t^2.902 + t^3. + t^3.872 + t^3.97 + 4*t^4.451 + 2*t^4.549 + 4*t^4.647 + t^4.745 + 2*t^4.842 + t^5.03 + 5*t^5.128 + 4*t^5.226 + 3*t^5.323 + t^5.421 + t^5.609 + 2*t^5.707 + 3*t^5.804 + t^5.902 - 3*t^6. - t^4.451/y - t^4.451*y | detail |