Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
6314 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }M_{1}M_{7}$ + ${ }M_{2}X_{1}$ + ${ }M_{1}M_{8}$ + ${ }M_{9}\phi_{1}q_{1}q_{2}$ + ${ }M_{10}X_{1}$ 0.7377 0.9515 0.7753 [X:[1.3235], M:[1.1275, 0.6765, 0.804, 1.0, 1.0, 0.804, 0.8725, 0.8725, 0.6765, 0.6765], q:[0.5343, 0.3382], qb:[0.6618, 0.6618], phi:[0.451]] [X:[[0, 6]], M:[[0, -10], [0, -6], [1, -19], [-1, 3], [1, -3], [-1, -13], [0, 10], [0, 10], [0, -6], [0, -6]], q:[[0, 13], [0, -3]], qb:[[-1, 6], [1, 0]], phi:[[0, -4]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{10}$, ${ }M_{9}$, ${ }M_{3}$, ${ }M_{6}$, ${ }M_{7}$, ${ }M_{8}$, ${ }\phi_{1}^{2}$, ${ }M_{5}$, ${ }M_{4}$, ${ }M_{10}^{2}$, ${ }M_{10}M_{9}$, ${ }M_{9}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{10}M_{3}$, ${ }M_{3}M_{9}$, ${ }M_{10}M_{6}$, ${ }M_{6}M_{9}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{10}M_{7}$, ${ }M_{10}M_{8}$, ${ }M_{7}M_{9}$, ${ }M_{8}M_{9}$, ${ }M_{10}\phi_{1}^{2}$, ${ }M_{9}\phi_{1}^{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{6}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{10}M_{5}$, ${ }M_{3}M_{7}$, ${ }M_{3}M_{8}$, ${ }M_{5}M_{9}$, ${ }M_{10}M_{4}$, ${ }M_{6}M_{7}$, ${ }M_{6}M_{8}$, ${ }M_{4}M_{9}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{7}^{2}$, ${ }M_{7}M_{8}$, ${ }M_{8}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{3}M_{4}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}^{4}$, ${ }M_{4}M_{6}$, ${ }M_{5}M_{7}$, ${ }M_{5}M_{8}$, ${ }M_{4}M_{7}$, ${ }M_{4}M_{8}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$ ${}M_{4}^{2}$, ${ }M_{5}^{2}$ -3 2*t^2.029 + 2*t^2.412 + 2*t^2.618 + t^2.706 + 2*t^3. + 3*t^4.059 + 2*t^4.353 + 4*t^4.441 + t^4.559 + 4*t^4.647 + 2*t^4.735 + 3*t^4.824 + 2*t^4.941 + 6*t^5.029 + 2*t^5.118 + 3*t^5.235 + 5*t^5.324 + 4*t^5.412 + 2*t^5.618 + 2*t^5.706 - 3*t^6. + 4*t^6.088 + 6*t^6.471 + 5*t^6.676 + 6*t^6.765 + 6*t^6.853 + 4*t^6.971 + 12*t^7.059 + 4*t^7.147 + 2*t^7.176 + 4*t^7.236 + 6*t^7.265 + 12*t^7.353 + 10*t^7.441 + 3*t^7.53 + 4*t^7.559 + 6*t^7.647 + 10*t^7.735 + 6*t^7.824 + 3*t^7.853 + 6*t^7.941 + 9*t^8.118 + 2*t^8.324 - 6*t^8.412 + 8*t^8.5 - t^8.529 - 11*t^8.618 + 3*t^8.706 + 3*t^8.794 + 9*t^8.883 - 2*t^8.912 - t^4.353/y - (2*t^6.382)/y - (2*t^6.765)/y - t^6.971/y + (4*t^7.441)/y + (5*t^7.647)/y + (3*t^7.735)/y + t^7.824/y + (2*t^7.941)/y + (8*t^8.029)/y + (2*t^8.118)/y + t^8.235/y + (4*t^8.324)/y + t^8.412/y + (4*t^8.618)/y + (2*t^8.706)/y - (4*t^8.794)/y - t^4.353*y - 2*t^6.382*y - 2*t^6.765*y - t^6.971*y + 4*t^7.441*y + 5*t^7.647*y + 3*t^7.735*y + t^7.824*y + 2*t^7.941*y + 8*t^8.029*y + 2*t^8.118*y + t^8.235*y + 4*t^8.324*y + t^8.412*y + 4*t^8.618*y + 2*t^8.706*y - 4*t^8.794*y (2*t^2.029)/g2^6 + (g1*t^2.412)/g2^19 + t^2.412/(g1*g2^13) + 2*g2^10*t^2.618 + t^2.706/g2^8 + (g1*t^3.)/g2^3 + (g2^3*t^3.)/g1 + (3*t^4.059)/g2^12 + (g1*t^4.353)/g2^7 + t^4.353/(g1*g2) + (2*g1*t^4.441)/g2^25 + (2*t^4.441)/(g1*g2^19) + g2^22*t^4.559 + 4*g2^4*t^4.647 + (2*t^4.735)/g2^14 + (g1^2*t^4.824)/g2^38 + t^4.824/g2^32 + t^4.824/(g1^2*g2^26) + g1*g2^9*t^4.941 + (g2^15*t^4.941)/g1 + (3*g1*t^5.029)/g2^9 + (3*t^5.029)/(g1*g2^3) + (g1*t^5.118)/g2^27 + t^5.118/(g1*g2^21) + 3*g2^20*t^5.235 + (g1^2*t^5.324)/g2^4 + 3*g2^2*t^5.324 + (g2^8*t^5.324)/g1^2 + (g1^2*t^5.412)/g2^22 + (2*t^5.412)/g2^16 + t^5.412/(g1^2*g2^10) + g1*g2^7*t^5.618 + (g2^13*t^5.618)/g1 + (g1*t^5.706)/g2^11 + t^5.706/(g1*g2^5) - 3*t^6. + (4*t^6.088)/g2^18 + (3*g1*t^6.471)/g2^31 + (3*t^6.471)/(g1*g2^25) + (5*t^6.676)/g2^2 + (g1^2*t^6.765)/g2^26 + (4*t^6.765)/g2^20 + t^6.765/(g1^2*g2^14) + (2*g1^2*t^6.853)/g2^44 + (2*t^6.853)/g2^38 + (2*t^6.853)/(g1^2*g2^32) + 2*g1*g2^3*t^6.971 + (2*g2^9*t^6.971)/g1 + (6*g1*t^7.059)/g2^15 + (6*t^7.059)/(g1*g2^9) + (2*g1*t^7.147)/g2^33 + (2*t^7.147)/(g1*g2^27) + 2*g2^32*t^7.176 + (g1^3*t^7.236)/g2^57 + (g1*t^7.236)/g2^51 + t^7.236/(g1*g2^45) + t^7.236/(g1^3*g2^39) + 6*g2^14*t^7.265 + (3*g1^2*t^7.353)/g2^10 + (6*t^7.353)/g2^4 + (3*g2^2*t^7.353)/g1^2 + (3*g1^2*t^7.441)/g2^28 + (4*t^7.441)/g2^22 + (3*t^7.441)/(g1^2*g2^16) + (g1^2*t^7.53)/g2^46 + t^7.53/g2^40 + t^7.53/(g1^2*g2^34) + 2*g1*g2^19*t^7.559 + (2*g2^25*t^7.559)/g1 + 3*g1*g2*t^7.647 + (3*g2^7*t^7.647)/g1 + (g1^3*t^7.735)/g2^23 + (4*g1*t^7.735)/g2^17 + (4*t^7.735)/(g1*g2^11) + t^7.735/(g1^3*g2^5) + (g1^3*t^7.824)/g2^41 + (2*g1*t^7.824)/g2^35 + (2*t^7.824)/(g1*g2^29) + t^7.824/(g1^3*g2^23) + 3*g2^30*t^7.853 + 2*g1^2*g2^6*t^7.941 + 2*g2^12*t^7.941 + (2*g2^18*t^7.941)/g1^2 + (2*t^8.029)/g1^2 + (2*g1^2*t^8.029)/g2^12 - (4*t^8.029)/g2^6 + (g1^2*t^8.118)/g2^30 + (7*t^8.118)/g2^24 + t^8.118/(g1^2*g2^18) + (g1^3*t^8.324)/g2^7 + (g2^11*t^8.324)/g1^3 - (3*g1*t^8.412)/g2^19 - (3*t^8.412)/(g1*g2^13) + (4*g1*t^8.5)/g2^37 + (4*t^8.5)/(g1*g2^31) - g2^28*t^8.529 - g1^2*g2^4*t^8.618 - 9*g2^10*t^8.618 - (g2^16*t^8.618)/g1^2 + (3*t^8.706)/g2^8 + (3*t^8.794)/g2^26 + (3*g1^2*t^8.883)/g2^50 + (3*t^8.883)/g2^44 + (3*t^8.883)/(g1^2*g2^38) - g1*g2^15*t^8.912 - (g2^21*t^8.912)/g1 - t^4.353/(g2^4*y) - (2*t^6.382)/(g2^10*y) - (g1*t^6.765)/(g2^23*y) - t^6.765/(g1*g2^17*y) - (g2^6*t^6.971)/y + (2*g1*t^7.441)/(g2^25*y) + (2*t^7.441)/(g1*g2^19*y) + (5*g2^4*t^7.647)/y + (3*t^7.735)/(g2^14*y) + t^7.824/(g2^32*y) + (g1*g2^9*t^7.941)/y + (g2^15*t^7.941)/(g1*y) + (4*g1*t^8.029)/(g2^9*y) + (4*t^8.029)/(g1*g2^3*y) + (g1*t^8.118)/(g2^27*y) + t^8.118/(g1*g2^21*y) + (g2^20*t^8.235)/y + (4*g2^2*t^8.324)/y + (g1^2*t^8.412)/(g2^22*y) - t^8.412/(g2^16*y) + t^8.412/(g1^2*g2^10*y) + (2*g1*g2^7*t^8.618)/y + (2*g2^13*t^8.618)/(g1*y) + (g1*t^8.706)/(g2^11*y) + t^8.706/(g1*g2^5*y) - (2*g1*t^8.794)/(g2^29*y) - (2*t^8.794)/(g1*g2^23*y) - (t^4.353*y)/g2^4 - (2*t^6.382*y)/g2^10 - (g1*t^6.765*y)/g2^23 - (t^6.765*y)/(g1*g2^17) - g2^6*t^6.971*y + (2*g1*t^7.441*y)/g2^25 + (2*t^7.441*y)/(g1*g2^19) + 5*g2^4*t^7.647*y + (3*t^7.735*y)/g2^14 + (t^7.824*y)/g2^32 + g1*g2^9*t^7.941*y + (g2^15*t^7.941*y)/g1 + (4*g1*t^8.029*y)/g2^9 + (4*t^8.029*y)/(g1*g2^3) + (g1*t^8.118*y)/g2^27 + (t^8.118*y)/(g1*g2^21) + g2^20*t^8.235*y + 4*g2^2*t^8.324*y + (g1^2*t^8.412*y)/g2^22 - (t^8.412*y)/g2^16 + (t^8.412*y)/(g1^2*g2^10) + 2*g1*g2^7*t^8.618*y + (2*g2^13*t^8.618*y)/g1 + (g1*t^8.706*y)/g2^11 + (t^8.706*y)/(g1*g2^5) - (2*g1*t^8.794*y)/g2^29 - (2*t^8.794*y)/(g1*g2^23)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
4716 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }M_{1}M_{7}$ + ${ }M_{2}X_{1}$ + ${ }M_{1}M_{8}$ + ${ }M_{9}\phi_{1}q_{1}q_{2}$ 0.7169 0.9105 0.7874 [X:[1.3232], M:[1.1281, 0.6768, 0.8049, 1.0, 1.0, 0.8049, 0.8719, 0.8719, 0.6768], q:[0.5335, 0.3384], qb:[0.6616, 0.6616], phi:[0.4512]] t^2.031 + 2*t^2.415 + 2*t^2.616 + t^2.707 + 2*t^3. + t^3.969 + t^4.061 + 2*t^4.354 + 2*t^4.445 + t^4.555 + 2*t^4.646 + t^4.738 + 3*t^4.829 + 2*t^4.939 + 4*t^5.031 + 2*t^5.122 + 3*t^5.232 + 5*t^5.323 + 4*t^5.415 + 2*t^5.616 + 2*t^5.707 - 2*t^6. - t^4.354/y - t^4.354*y detail