Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
6297 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }M_{1}M_{7}$ + ${ }M_{2}X_{1}$ + ${ }M_{1}M_{8}$ + ${ }M_{9}\phi_{1}^{2}$ + ${ }M_{10}\phi_{1}q_{1}q_{2}$ 0.7084 0.8959 0.7907 [X:[1.3157], M:[1.1406, 0.6843, 0.8249, 1.0, 1.0, 0.8249, 0.8594, 0.8594, 1.0875, 0.6843], q:[0.5172, 0.3422], qb:[0.6578, 0.6578], phi:[0.4562]] [X:[[0, 6]], M:[[0, -10], [0, -6], [1, -19], [-1, 3], [1, -3], [-1, -13], [0, 10], [0, 10], [0, 8], [0, -6]], q:[[0, 13], [0, -3]], qb:[[-1, 6], [1, 0]], phi:[[0, -4]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{10}$, ${ }M_{3}$, ${ }M_{6}$, ${ }M_{7}$, ${ }M_{8}$, ${ }M_{5}$, ${ }M_{4}$, ${ }M_{9}$, ${ }X_{1}$, ${ }M_{10}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{10}M_{3}$, ${ }M_{10}M_{6}$, ${ }M_{10}M_{7}$, ${ }M_{10}M_{8}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{10}M_{5}$, ${ }M_{3}M_{7}$, ${ }M_{3}M_{8}$, ${ }M_{10}M_{4}$, ${ }M_{6}M_{7}$, ${ }M_{6}M_{8}$, ${ }M_{7}^{2}$, ${ }M_{7}M_{8}$, ${ }M_{8}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{10}M_{9}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{3}M_{4}$, ${ }M_{5}M_{6}$, ${ }M_{4}M_{6}$, ${ }M_{5}M_{7}$, ${ }M_{5}M_{8}$, ${ }M_{4}M_{7}$, ${ }M_{4}M_{8}$, ${ }M_{3}M_{9}$, ${ }M_{6}M_{9}$, ${ }M_{7}M_{9}$, ${ }M_{8}M_{9}$ ${}M_{4}^{2}$, ${ }M_{5}^{2}$, ${ }M_{10}X_{1}$ -2 t^2.053 + 2*t^2.475 + 2*t^2.578 + 2*t^3. + t^3.263 + t^3.947 + t^4.106 + 2*t^4.369 + t^4.472 + 2*t^4.528 + 2*t^4.631 + 2*t^4.894 + 3*t^4.95 + 4*t^5.053 + 3*t^5.157 + 4*t^5.316 + 3*t^5.475 + 2*t^5.578 + 2*t^5.737 + 2*t^5.841 - 2*t^6. + t^6.159 + 2*t^6.263 + 2*t^6.525 + 2*t^6.581 + t^6.684 + 3*t^6.843 + 4*t^6.947 + 3*t^7.003 + 2*t^7.05 + 4*t^7.106 + 3*t^7.21 + 6*t^7.369 + 4*t^7.424 + 4*t^7.472 + 5*t^7.528 + 4*t^7.631 + 4*t^7.735 + 6*t^7.79 + 6*t^7.894 + 4*t^7.95 - t^8.053 + 2*t^8.157 + 4*t^8.212 + 6*t^8.316 + 3*t^8.419 - 6*t^8.475 - 5*t^8.578 + 2*t^8.634 + 4*t^8.737 + 2*t^8.841 - t^8.897 + t^8.944 - t^4.369/y - t^6.422/y - (2*t^6.843)/y - t^6.947/y + (2*t^7.528)/y + (2*t^7.631)/y + t^7.79/y + (2*t^7.894)/y + t^7.95/y + (6*t^8.053)/y + t^8.157/y + (2*t^8.316)/y + (3*t^8.475)/y + (4*t^8.578)/y + (2*t^8.737)/y + (2*t^8.841)/y - (2*t^8.897)/y - t^4.369*y - t^6.422*y - 2*t^6.843*y - t^6.947*y + 2*t^7.528*y + 2*t^7.631*y + t^7.79*y + 2*t^7.894*y + t^7.95*y + 6*t^8.053*y + t^8.157*y + 2*t^8.316*y + 3*t^8.475*y + 4*t^8.578*y + 2*t^8.737*y + 2*t^8.841*y - 2*t^8.897*y t^2.053/g2^6 + (g1*t^2.475)/g2^19 + t^2.475/(g1*g2^13) + 2*g2^10*t^2.578 + (g1*t^3.)/g2^3 + (g2^3*t^3.)/g1 + g2^8*t^3.263 + g2^6*t^3.947 + t^4.106/g2^12 + (g1*t^4.369)/g2^7 + t^4.369/(g1*g2) + g2^22*t^4.472 + (g1*t^4.528)/g2^25 + t^4.528/(g1*g2^19) + 2*g2^4*t^4.631 + g1*g2^9*t^4.894 + (g2^15*t^4.894)/g1 + (g1^2*t^4.95)/g2^38 + t^4.95/g2^32 + t^4.95/(g1^2*g2^26) + (2*g1*t^5.053)/g2^9 + (2*t^5.053)/(g1*g2^3) + 3*g2^20*t^5.157 + (g1^2*t^5.316)/g2^4 + 2*g2^2*t^5.316 + (g2^8*t^5.316)/g1^2 + (g1^2*t^5.475)/g2^22 + t^5.475/g2^16 + t^5.475/(g1^2*g2^10) + g1*g2^7*t^5.578 + (g2^13*t^5.578)/g1 + (g1*t^5.737)/g2^11 + t^5.737/(g1*g2^5) + 2*g2^18*t^5.841 - 2*t^6. + t^6.159/g2^18 + g1*g2^5*t^6.263 + (g2^11*t^6.263)/g1 + 2*g2^16*t^6.525 + (g1*t^6.581)/g2^31 + t^6.581/(g1*g2^25) + t^6.684/g2^2 + (g1^2*t^6.843)/g2^26 + t^6.843/g2^20 + t^6.843/(g1^2*g2^14) + 2*g1*g2^3*t^6.947 + (2*g2^9*t^6.947)/g1 + (g1^2*t^7.003)/g2^44 + t^7.003/g2^38 + t^7.003/(g1^2*g2^32) + 2*g2^32*t^7.05 + (2*g1*t^7.106)/g2^15 + (2*t^7.106)/(g1*g2^9) + 3*g2^14*t^7.21 + (2*g1^2*t^7.369)/g2^10 + (2*t^7.369)/g2^4 + (2*g2^2*t^7.369)/g1^2 + (g1^3*t^7.424)/g2^57 + (g1*t^7.424)/g2^51 + t^7.424/(g1*g2^45) + t^7.424/(g1^3*g2^39) + 2*g1*g2^19*t^7.472 + (2*g2^25*t^7.472)/g1 + (2*g1^2*t^7.528)/g2^28 + t^7.528/g2^22 + (2*t^7.528)/(g1^2*g2^16) + 2*g1*g2*t^7.631 + (2*g2^7*t^7.631)/g1 + 4*g2^30*t^7.735 + (g1^3*t^7.79)/g2^23 + (2*g1*t^7.79)/g2^17 + (2*t^7.79)/(g1*g2^11) + t^7.79/(g1^3*g2^5) + 2*g1^2*g2^6*t^7.894 + 2*g2^12*t^7.894 + (2*g2^18*t^7.894)/g1^2 + (g1^3*t^7.95)/g2^41 + (g1*t^7.95)/g2^35 + t^7.95/(g1*g2^29) + t^7.95/(g1^3*g2^23) + t^8.053/g1^2 + (g1^2*t^8.053)/g2^12 - (3*t^8.053)/g2^6 + g1*g2^17*t^8.157 + (g2^23*t^8.157)/g1 + (g1^2*t^8.212)/g2^30 + (2*t^8.212)/g2^24 + t^8.212/(g1^2*g2^18) + (g1^3*t^8.316)/g2^7 + (2*g1*t^8.316)/g2 + (2*g2^5*t^8.316)/g1 + (g2^11*t^8.316)/g1^3 + 3*g2^28*t^8.419 - (3*g1*t^8.475)/g2^19 - (3*t^8.475)/(g1*g2^13) - 5*g2^10*t^8.578 + (g1*t^8.634)/g2^37 + t^8.634/(g1*g2^31) + (g1^2*t^8.737)/g2^14 + (2*t^8.737)/g2^8 + t^8.737/(g1^2*g2^2) + g1*g2^15*t^8.841 + (g2^21*t^8.841)/g1 - t^8.897/g2^26 + g2^44*t^8.944 - t^4.369/(g2^4*y) - t^6.422/(g2^10*y) - (g1*t^6.843)/(g2^23*y) - t^6.843/(g1*g2^17*y) - (g2^6*t^6.947)/y + (g1*t^7.528)/(g2^25*y) + t^7.528/(g1*g2^19*y) + (2*g2^4*t^7.631)/y + t^7.79/(g2^14*y) + (g1*g2^9*t^7.894)/y + (g2^15*t^7.894)/(g1*y) + t^7.95/(g2^32*y) + (3*g1*t^8.053)/(g2^9*y) + (3*t^8.053)/(g1*g2^3*y) + (g2^20*t^8.157)/y + (2*g2^2*t^8.316)/y + (g1^2*t^8.475)/(g2^22*y) + t^8.475/(g2^16*y) + t^8.475/(g1^2*g2^10*y) + (2*g1*g2^7*t^8.578)/y + (2*g2^13*t^8.578)/(g1*y) + (g1*t^8.737)/(g2^11*y) + t^8.737/(g1*g2^5*y) + (2*g2^18*t^8.841)/y - (g1*t^8.897)/(g2^29*y) - t^8.897/(g1*g2^23*y) - (t^4.369*y)/g2^4 - (t^6.422*y)/g2^10 - (g1*t^6.843*y)/g2^23 - (t^6.843*y)/(g1*g2^17) - g2^6*t^6.947*y + (g1*t^7.528*y)/g2^25 + (t^7.528*y)/(g1*g2^19) + 2*g2^4*t^7.631*y + (t^7.79*y)/g2^14 + g1*g2^9*t^7.894*y + (g2^15*t^7.894*y)/g1 + (t^7.95*y)/g2^32 + (3*g1*t^8.053*y)/g2^9 + (3*t^8.053*y)/(g1*g2^3) + g2^20*t^8.157*y + 2*g2^2*t^8.316*y + (g1^2*t^8.475*y)/g2^22 + (t^8.475*y)/g2^16 + (t^8.475*y)/(g1^2*g2^10) + 2*g1*g2^7*t^8.578*y + (2*g2^13*t^8.578*y)/g1 + (g1*t^8.737*y)/g2^11 + (t^8.737*y)/(g1*g2^5) + 2*g2^18*t^8.841*y - (g1*t^8.897*y)/g2^29 - (t^8.897*y)/(g1*g2^23)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
4715 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }M_{1}M_{7}$ + ${ }M_{2}X_{1}$ + ${ }M_{1}M_{8}$ + ${ }M_{9}\phi_{1}^{2}$ 0.6877 0.8555 0.8038 [X:[1.315], M:[1.1417, 0.685, 0.8267, 1.0, 1.0, 0.8267, 0.8583, 0.8583, 1.0867], q:[0.5158, 0.3425], qb:[0.6575, 0.6575], phi:[0.4567]] 2*t^2.48 + 2*t^2.575 + 2*t^3. + t^3.26 + 2*t^3.945 + 2*t^4.37 + t^4.465 + 2*t^4.89 + 3*t^4.96 + 2*t^5.055 + 3*t^5.15 + 3*t^5.315 + 3*t^5.48 + 2*t^5.575 + 2*t^5.74 + 2*t^5.835 - 3*t^6. - t^4.37/y - t^4.37*y detail