Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
6241 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{5}M_{6}$ + ${ }M_{2}X_{1}$ + ${ }M_{5}M_{7}$ + ${ }M_{8}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{9}X_{1}$ 0.6982 0.8923 0.7824 [X:[1.3203], M:[1.1068, 0.6797, 0.9128, 0.8737, 1.1263, 0.8737, 0.8737, 0.6797, 0.6797], q:[0.5534, 0.3398], qb:[0.5338, 0.7865], phi:[0.4466]] [X:[[6]], M:[[2], [-6], [-11], [7], [-7], [7], [7], [-6], [-6]], q:[[1], [-3]], qb:[[10], [-4]], phi:[[-1]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{8}$, ${ }M_{9}$, ${ }M_{4}$, ${ }M_{6}$, ${ }M_{7}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }M_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{8}^{2}$, ${ }M_{8}M_{9}$, ${ }M_{9}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{4}M_{8}$, ${ }M_{6}M_{8}$, ${ }M_{7}M_{8}$, ${ }M_{4}M_{9}$, ${ }M_{6}M_{9}$, ${ }M_{7}M_{9}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }M_{9}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}M_{8}$, ${ }M_{3}M_{9}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{6}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}M_{4}$, ${ }M_{3}M_{6}$, ${ }M_{3}M_{7}$, ${ }M_{1}M_{8}$, ${ }M_{1}M_{9}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{1}M_{6}$, ${ }M_{1}M_{7}$ ${}$ -4 2*t^2.039 + 3*t^2.621 + t^2.68 + t^2.738 + t^3.32 + 2*t^4.02 + 3*t^4.078 + t^4.543 + t^4.602 + 6*t^4.66 + 3*t^4.719 + 2*t^4.777 + 5*t^5.242 + 3*t^5.301 + 6*t^5.359 + t^5.477 + 2*t^5.941 - 4*t^6. + 5*t^6.059 + 4*t^6.117 + 5*t^6.641 + 8*t^6.699 + 5*t^6.758 + 3*t^6.816 + 3*t^7.164 + 3*t^7.223 + 10*t^7.281 + 6*t^7.34 + 10*t^7.398 + t^7.457 + 2*t^7.516 + 7*t^7.863 + 3*t^7.922 + 7*t^7.98 - 6*t^8.039 + 10*t^8.098 + 5*t^8.156 + t^8.215 + 2*t^8.562 - 12*t^8.621 + 6*t^8.68 + 6*t^8.738 + 9*t^8.797 + 4*t^8.856 - t^4.34/y - (2*t^6.379)/y - (2*t^6.961)/y + t^7.602/y + (6*t^7.66)/y + (4*t^7.719)/y + (2*t^7.777)/y + (3*t^8.242)/y + (5*t^8.301)/y + (5*t^8.359)/y - (2*t^8.418)/y + (3*t^8.941)/y - t^4.34*y - 2*t^6.379*y - 2*t^6.961*y + t^7.602*y + 6*t^7.66*y + 4*t^7.719*y + 2*t^7.777*y + 3*t^8.242*y + 5*t^8.301*y + 5*t^8.359*y - 2*t^8.418*y + 3*t^8.941*y (2*t^2.039)/g1^6 + 3*g1^7*t^2.621 + t^2.68/g1^2 + t^2.738/g1^11 + g1^2*t^3.32 + (2*t^4.02)/g1^3 + (3*t^4.078)/g1^12 + g1^19*t^4.543 + g1^10*t^4.602 + 6*g1*t^4.66 + (3*t^4.719)/g1^8 + (2*t^4.777)/g1^17 + 5*g1^14*t^5.242 + 3*g1^5*t^5.301 + (6*t^5.359)/g1^4 + t^5.477/g1^22 + 2*g1^9*t^5.941 - 4*t^6. + (5*t^6.059)/g1^9 + (4*t^6.117)/g1^18 + 5*g1^4*t^6.641 + (8*t^6.699)/g1^5 + (5*t^6.758)/g1^14 + (3*t^6.816)/g1^23 + 3*g1^26*t^7.164 + 3*g1^17*t^7.223 + 10*g1^8*t^7.281 + (6*t^7.34)/g1 + (10*t^7.398)/g1^10 + t^7.457/g1^19 + (2*t^7.516)/g1^28 + 7*g1^21*t^7.863 + 3*g1^12*t^7.922 + 7*g1^3*t^7.98 - (6*t^8.039)/g1^6 + (10*t^8.098)/g1^15 + (5*t^8.156)/g1^24 + t^8.215/g1^33 + 2*g1^16*t^8.562 - 12*g1^7*t^8.621 + (6*t^8.68)/g1^2 + (6*t^8.738)/g1^11 + (9*t^8.797)/g1^20 + (4*t^8.856)/g1^29 - t^4.34/(g1*y) - (2*t^6.379)/(g1^7*y) - (2*g1^6*t^6.961)/y + (g1^10*t^7.602)/y + (6*g1*t^7.66)/y + (4*t^7.719)/(g1^8*y) + (2*t^7.777)/(g1^17*y) + (3*g1^14*t^8.242)/y + (5*g1^5*t^8.301)/y + (5*t^8.359)/(g1^4*y) - (2*t^8.418)/(g1^13*y) + (3*g1^9*t^8.941)/y - (t^4.34*y)/g1 - (2*t^6.379*y)/g1^7 - 2*g1^6*t^6.961*y + g1^10*t^7.602*y + 6*g1*t^7.66*y + (4*t^7.719*y)/g1^8 + (2*t^7.777*y)/g1^17 + 3*g1^14*t^8.242*y + 5*g1^5*t^8.301*y + (5*t^8.359*y)/g1^4 - (2*t^8.418*y)/g1^13 + 3*g1^9*t^8.941*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
4659 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{5}M_{6}$ + ${ }M_{2}X_{1}$ + ${ }M_{5}M_{7}$ + ${ }M_{8}\phi_{1}q_{2}\tilde{q}_{1}$ 0.6774 0.8516 0.7954 [X:[1.3193], M:[1.1064, 0.6807, 0.9147, 0.8725, 1.1275, 0.8725, 0.8725, 0.6807], q:[0.5532, 0.3404], qb:[0.5321, 0.7871], phi:[0.4468]] t^2.042 + 3*t^2.617 + t^2.681 + t^2.744 + t^3.319 + t^3.958 + 2*t^4.021 + t^4.084 + t^4.533 + t^4.596 + 3*t^4.66 + 2*t^4.723 + t^4.786 + 5*t^5.235 + 3*t^5.298 + 5*t^5.361 + t^5.488 + 2*t^5.937 - 3*t^6. - t^4.34/y - t^4.34*y detail