Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
6204 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{5}M_{6}$ + ${ }M_{2}X_{1}$ + ${ }M_{4}M_{7}$ + ${ }M_{8}\phi_{1}q_{1}q_{2}$ + ${ }M_{9}q_{1}\tilde{q}_{2}$ | 0.6783 | 0.8585 | 0.7901 | [X:[1.3494], M:[1.1165, 0.6506, 0.8594, 0.9077, 1.0923, 0.9077, 1.0923, 0.6747, 0.6747], q:[0.5582, 0.3253], qb:[0.5824, 0.767], phi:[0.4418]] | [X:[[6]], M:[[2], [-6], [-11], [7], [-7], [7], [-7], [3], [3]], q:[[1], [-3]], qb:[[10], [-4]], phi:[[-1]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{8}$, ${ }M_{9}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{6}$, ${ }M_{5}$, ${ }M_{7}$, ${ }M_{1}$, ${ }M_{8}^{2}$, ${ }M_{8}M_{9}$, ${ }M_{9}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }M_{3}M_{8}$, ${ }M_{3}M_{9}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }M_{9}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{6}M_{8}$, ${ }M_{6}M_{9}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{5}M_{8}$, ${ }M_{7}M_{8}$, ${ }M_{5}M_{9}$, ${ }M_{7}M_{9}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{8}$, ${ }M_{1}M_{9}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}M_{5}$, ${ }M_{3}M_{7}$, ${ }M_{1}M_{3}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$ | ${}M_{6}M_{7}$ | -2 | 2*t^2.024 + t^2.578 + t^2.651 + t^2.723 + 2*t^3.277 + t^3.349 + 5*t^4.048 + 3*t^4.602 + 2*t^4.675 + 3*t^4.747 + t^4.82 + t^5.156 + 6*t^5.301 + 3*t^5.374 + 2*t^5.855 + 3*t^5.928 - 2*t^6. + 8*t^6.072 + t^6.554 + 6*t^6.626 + 2*t^6.699 + 5*t^6.771 + 2*t^6.844 + 3*t^7.18 - t^7.253 + 10*t^7.325 + 7*t^7.398 + t^7.47 + t^7.543 + t^7.734 + 6*t^7.879 + 5*t^7.952 - 6*t^8.024 + 14*t^8.097 + 2*t^8.433 + 2*t^8.506 + 8*t^8.651 - 3*t^8.723 + 6*t^8.795 + 5*t^8.868 - t^4.325/y - (2*t^6.349)/y - t^6.903/y + t^7.048/y + (2*t^7.602)/y + (2*t^7.675)/y + (3*t^7.747)/y + t^8.229/y + (7*t^8.301)/y + (2*t^8.855)/y + t^8.928/y - t^4.325*y - 2*t^6.349*y - t^6.903*y + t^7.048*y + 2*t^7.602*y + 2*t^7.675*y + 3*t^7.747*y + t^8.229*y + 7*t^8.301*y + 2*t^8.855*y + t^8.928*y | 2*g1^3*t^2.024 + t^2.578/g1^11 + t^2.651/g1^2 + g1^7*t^2.723 + (2*t^3.277)/g1^7 + g1^2*t^3.349 + 5*g1^6*t^4.048 + (3*t^4.602)/g1^8 + 2*g1*t^4.675 + 3*g1^10*t^4.747 + g1^19*t^4.82 + t^5.156/g1^22 + (6*t^5.301)/g1^4 + 3*g1^5*t^5.374 + (2*t^5.855)/g1^18 + (3*t^5.928)/g1^9 - 2*t^6. + 8*g1^9*t^6.072 + t^6.554/g1^14 + (6*t^6.626)/g1^5 + 2*g1^4*t^6.699 + 5*g1^13*t^6.771 + 2*g1^22*t^6.844 + (3*t^7.18)/g1^19 - t^7.253/g1^10 + (10*t^7.325)/g1 + 7*g1^8*t^7.398 + g1^17*t^7.47 + g1^26*t^7.543 + t^7.734/g1^33 + (6*t^7.879)/g1^15 + (5*t^7.952)/g1^6 - 6*g1^3*t^8.024 + 14*g1^12*t^8.097 + (2*t^8.433)/g1^29 + (2*t^8.506)/g1^20 + (8*t^8.651)/g1^2 - 3*g1^7*t^8.723 + 6*g1^16*t^8.795 + 5*g1^25*t^8.868 - t^4.325/(g1*y) - (2*g1^2*t^6.349)/y - t^6.903/(g1^12*y) + (g1^6*t^7.048)/y + (2*t^7.602)/(g1^8*y) + (2*g1*t^7.675)/y + (3*g1^10*t^7.747)/y + t^8.229/(g1^13*y) + (7*t^8.301)/(g1^4*y) + (2*t^8.855)/(g1^18*y) + t^8.928/(g1^9*y) - (t^4.325*y)/g1 - 2*g1^2*t^6.349*y - (t^6.903*y)/g1^12 + g1^6*t^7.048*y + (2*t^7.602*y)/g1^8 + 2*g1*t^7.675*y + 3*g1^10*t^7.747*y + (t^8.229*y)/g1^13 + (7*t^8.301*y)/g1^4 + (2*t^8.855*y)/g1^18 + (t^8.928*y)/g1^9 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
4644 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{5}M_{6}$ + ${ }M_{2}X_{1}$ + ${ }M_{4}M_{7}$ + ${ }M_{8}\phi_{1}q_{1}q_{2}$ | 0.6574 | 0.8173 | 0.8044 | [X:[1.3498], M:[1.1166, 0.6502, 0.8587, 0.9081, 1.0919, 0.9081, 1.0919, 0.6749], q:[0.5583, 0.3251], qb:[0.583, 0.7668], phi:[0.4417]] | t^2.025 + t^2.576 + t^2.65 + t^2.724 + 2*t^3.276 + t^3.35 + t^3.975 + 3*t^4.049 + 2*t^4.601 + t^4.675 + 2*t^4.749 + t^4.823 + t^5.152 + 4*t^5.3 + 2*t^5.375 + 2*t^5.852 + 3*t^5.926 - t^6. - t^4.325/y - t^4.325*y | detail |