Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
61261 | SU3adj1nf2 | ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ | 1.3313 | 1.5863 | 0.8393 | [X:[], M:[0.8604, 1.2, 0.8604], q:[0.4528, 0.5736], qb:[0.2868, 0.2868], phi:[0.4]] | [X:[], M:[[1, 2], [0, 0], [2, 1]], q:[[-2, -2], [1, 1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ | ${}\phi_{1}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}^{3}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ 2}\phi_{1}q_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}\tilde{q}_{2}^{3}$ | 2 | 2*t^2.22 + 4*t^2.58 + 2*t^3.6 + 4*t^3.78 + 3*t^4.44 + 2*t^4.62 + 8*t^4.8 + 4*t^4.98 + 10*t^5.16 + 4*t^5.82 + 2*t^6. + 12*t^6.18 + 14*t^6.36 + 4*t^6.66 + 4*t^6.84 + 10*t^7.02 + 9*t^7.2 + 24*t^7.38 + 20*t^7.56 + t^7.68 + 20*t^7.74 + 6*t^8.04 + 20*t^8.4 + 4*t^8.58 + 44*t^8.76 + 5*t^8.88 + 32*t^8.94 - t^4.2/y - t^5.4/y - (2*t^6.42)/y - (4*t^6.78)/y + t^7.44/y + (7*t^7.8)/y - (4*t^7.98)/y + (6*t^8.16)/y - (3*t^8.64)/y + (4*t^8.82)/y - t^4.2*y - t^5.4*y - 2*t^6.42*y - 4*t^6.78*y + t^7.44*y + 7*t^7.8*y - 4*t^7.98*y + 6*t^8.16*y - 3*t^8.64*y + 4*t^8.82*y | t^2.22/(g1*g2^2) + t^2.22/(g1^2*g2) + 2*g1^2*g2*t^2.58 + 2*g1*g2^2*t^2.58 + 2*t^3.6 + 2*g1^2*g2*t^3.78 + 2*g1*g2^2*t^3.78 + t^4.44/(g1^2*g2^4) + t^4.44/(g1^3*g2^3) + t^4.44/(g1^4*g2^2) + t^4.62/(g1*g2^2) + t^4.62/(g1^2*g2) + 4*t^4.8 + (2*g1*t^4.8)/g2 + (2*g2*t^4.8)/g1 + 2*g1^2*g2*t^4.98 + 2*g1*g2^2*t^4.98 + 3*g1^4*g2^2*t^5.16 + 4*g1^3*g2^3*t^5.16 + 3*g1^2*g2^4*t^5.16 + (2*t^5.82)/(g1*g2^2) + (2*t^5.82)/(g1^2*g2) + (g1*t^6.)/g2 + (g2*t^6.)/g1 + g1^3*t^6.18 + 5*g1^2*g2*t^6.18 + 5*g1*g2^2*t^6.18 + g2^3*t^6.18 + 4*g1^4*g2^2*t^6.36 + 6*g1^3*g2^3*t^6.36 + 4*g1^2*g2^4*t^6.36 + t^6.66/(g1^3*g2^6) + t^6.66/(g1^4*g2^5) + t^6.66/(g1^5*g2^4) + t^6.66/(g1^6*g2^3) + t^6.84/(g1^2*g2^4) + (2*t^6.84)/(g1^3*g2^3) + t^6.84/(g1^4*g2^2) + (2*t^7.02)/g1^3 + (2*t^7.02)/g2^3 + (3*t^7.02)/(g1*g2^2) + (3*t^7.02)/(g1^2*g2) + 5*t^7.2 + (2*g1*t^7.2)/g2 + (2*g2*t^7.2)/g1 + 3*g1^3*t^7.38 + 9*g1^2*g2*t^7.38 + 9*g1*g2^2*t^7.38 + 3*g2^3*t^7.38 + 6*g1^4*g2^2*t^7.56 + 8*g1^3*g2^3*t^7.56 + 6*g1^2*g2^4*t^7.56 + t^7.68/(g1^6*g2^6) + 4*g1^6*g2^3*t^7.74 + 6*g1^5*g2^4*t^7.74 + 6*g1^4*g2^5*t^7.74 + 4*g1^3*g2^6*t^7.74 + (2*t^8.04)/(g1^2*g2^4) + (2*t^8.04)/(g1^3*g2^3) + (2*t^8.04)/(g1^4*g2^2) + t^8.22/g1^3 + t^8.22/g2^3 - t^8.22/(g1*g2^2) - t^8.22/(g1^2*g2) + 8*t^8.4 + (g1^2*t^8.4)/g2^2 + (5*g1*t^8.4)/g2 + (5*g2*t^8.4)/g1 + (g2^2*t^8.4)/g1^2 + g1^3*t^8.58 + g1^2*g2*t^8.58 + g1*g2^2*t^8.58 + g2^3*t^8.58 + 2*g1^5*g2*t^8.76 + 12*g1^4*g2^2*t^8.76 + 16*g1^3*g2^3*t^8.76 + 12*g1^2*g2^4*t^8.76 + 2*g1*g2^5*t^8.76 + t^8.88/(g1^4*g2^8) + t^8.88/(g1^5*g2^7) + t^8.88/(g1^6*g2^6) + t^8.88/(g1^7*g2^5) + t^8.88/(g1^8*g2^4) + 6*g1^6*g2^3*t^8.94 + 10*g1^5*g2^4*t^8.94 + 10*g1^4*g2^5*t^8.94 + 6*g1^3*g2^6*t^8.94 - t^4.2/y - t^5.4/y - t^6.42/(g1*g2^2*y) - t^6.42/(g1^2*g2*y) - (2*g1^2*g2*t^6.78)/y - (2*g1*g2^2*t^6.78)/y + t^7.44/(g1^3*g2^3*y) + (3*t^7.8)/y + (2*g1*t^7.8)/(g2*y) + (2*g2*t^7.8)/(g1*y) - (2*g1^2*g2*t^7.98)/y - (2*g1*g2^2*t^7.98)/y + (g1^4*g2^2*t^8.16)/y + (4*g1^3*g2^3*t^8.16)/y + (g1^2*g2^4*t^8.16)/y - t^8.64/(g1^2*g2^4*y) - t^8.64/(g1^3*g2^3*y) - t^8.64/(g1^4*g2^2*y) + (2*t^8.82)/(g1*g2^2*y) + (2*t^8.82)/(g1^2*g2*y) - t^4.2*y - t^5.4*y - (t^6.42*y)/(g1*g2^2) - (t^6.42*y)/(g1^2*g2) - 2*g1^2*g2*t^6.78*y - 2*g1*g2^2*t^6.78*y + (t^7.44*y)/(g1^3*g2^3) + 3*t^7.8*y + (2*g1*t^7.8*y)/g2 + (2*g2*t^7.8*y)/g1 - 2*g1^2*g2*t^7.98*y - 2*g1*g2^2*t^7.98*y + g1^4*g2^2*t^8.16*y + 4*g1^3*g2^3*t^8.16*y + g1^2*g2^4*t^8.16*y - (t^8.64*y)/(g1^2*g2^4) - (t^8.64*y)/(g1^3*g2^3) - (t^8.64*y)/(g1^4*g2^2) + (2*t^8.82*y)/(g1*g2^2) + (2*t^8.82*y)/(g1^2*g2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
58405 | SU3adj1nf2 | ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ + ${ }M_{2}\phi_{1}^{2}$ | 1.3198 | 1.566 | 0.8428 | [X:[], M:[0.8611, 1.2], q:[0.4375, 0.5812], qb:[0.3014, 0.2798], phi:[0.4]] | t^2.15 + t^2.22 + 2*t^2.58 + t^2.65 + t^3.35 + 2*t^3.6 + 2*t^3.78 + 2*t^3.85 + t^4.3 + t^4.37 + t^4.43 + t^4.55 + t^4.62 + 2*t^4.74 + 3*t^4.8 + t^4.86 + 2*t^4.98 + 2*t^5.05 + 3*t^5.17 + 2*t^5.23 + t^5.3 + t^5.5 + t^5.57 + 2*t^5.75 + 2*t^5.82 + 3*t^5.94 + t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y | detail |