Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
61231 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ 1.1898 1.4319 0.8309 [X:[1.6], M:[0.8, 0.7258], q:[0.6914, 0.2172], qb:[0.5086, 0.1828], phi:[0.4]] [X:[[0]], M:[[0], [-3]], q:[[1], [-2]], qb:[[-1], [2]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }X_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$, ${ }\phi_{1}^{3}q_{2}^{3}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ ${}M_{1}\phi_{1}^{3}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{4}q_{2}\tilde{q}_{2}$, ${ 2}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}^{2}\tilde{q}_{2}^{2}$ 6 2*t^2.18 + 3*t^2.4 + t^2.62 + t^3.38 + 2*t^3.6 + t^3.82 + 3*t^4.36 + 7*t^4.58 + 11*t^4.8 + 4*t^5.02 + 2*t^5.24 + 3*t^5.56 + 7*t^5.78 + 6*t^6. + 4*t^6.22 + t^6.44 + 4*t^6.53 + 12*t^6.76 + 23*t^6.98 + 25*t^7.2 + 11*t^7.42 + 6*t^7.64 + 5*t^7.73 + 2*t^7.87 + 14*t^7.96 + 17*t^8.18 + 12*t^8.4 + 6*t^8.62 + 5*t^8.71 + 4*t^8.84 + 18*t^8.93 - t^4.2/y - t^5.4/y - (2*t^6.38)/y - (2*t^6.6)/y - t^6.82/y + t^7.36/y + (4*t^7.58)/y + (2*t^7.8)/y + (3*t^8.02)/y - t^8.56/y + (3*t^8.78)/y - t^4.2*y - t^5.4*y - 2*t^6.38*y - 2*t^6.6*y - t^6.82*y + t^7.36*y + 4*t^7.58*y + 2*t^7.8*y + 3*t^8.02*y - t^8.56*y + 3*t^8.78*y (2*t^2.18)/g1^3 + 3*t^2.4 + g1^3*t^2.62 + t^3.38/g1^3 + 2*t^3.6 + g1^3*t^3.82 + (3*t^4.36)/g1^6 + (7*t^4.58)/g1^3 + 11*t^4.8 + 4*g1^3*t^5.02 + 2*g1^6*t^5.24 + (3*t^5.56)/g1^6 + (7*t^5.78)/g1^3 + 6*t^6. + 4*g1^3*t^6.22 + g1^6*t^6.44 + (4*t^6.53)/g1^9 + (12*t^6.76)/g1^6 + (23*t^6.98)/g1^3 + 25*t^7.2 + 11*g1^3*t^7.42 + 6*g1^6*t^7.64 + (5*t^7.73)/g1^9 + 2*g1^9*t^7.87 + (14*t^7.96)/g1^6 + (17*t^8.18)/g1^3 + 12*t^8.4 + 6*g1^3*t^8.62 + (5*t^8.71)/g1^12 + 4*g1^6*t^8.84 + (18*t^8.93)/g1^9 - t^4.2/y - t^5.4/y - (2*t^6.38)/(g1^3*y) - (2*t^6.6)/y - (g1^3*t^6.82)/y + t^7.36/(g1^6*y) + (4*t^7.58)/(g1^3*y) + (2*t^7.8)/y + (3*g1^3*t^8.02)/y - t^8.56/(g1^6*y) + (3*t^8.78)/(g1^3*y) - t^4.2*y - t^5.4*y - (2*t^6.38*y)/g1^3 - 2*t^6.6*y - g1^3*t^6.82*y + (t^7.36*y)/g1^6 + (4*t^7.58*y)/g1^3 + 2*t^7.8*y + 3*g1^3*t^8.02*y - (t^8.56*y)/g1^6 + (3*t^8.78*y)/g1^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
58909 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ 1.17 1.395 0.8387 [X:[1.6], M:[0.8], q:[0.6889, 0.2222], qb:[0.5111, 0.1778], phi:[0.4]] t^2.2 + 3*t^2.4 + t^2.6 + t^3.4 + 2*t^3.6 + 2*t^3.8 + t^4.4 + 4*t^4.6 + 10*t^4.8 + 4*t^5. + 2*t^5.2 + 2*t^5.6 + 5*t^5.8 + 6*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail {a: 117/100, c: 279/200, X1: 8/5, M1: 4/5, q1: 31/45, q2: 2/9, qb1: 23/45, qb2: 8/45, phi1: 2/5}