Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
61229 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}M_{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }M_{2}M_{3}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ | 1.2568 | 1.4597 | 0.861 | [X:[1.353, 1.4279], M:[0.9626, 1.0374, 0.9626, 0.9147], q:[0.4319, 0.357], qb:[0.2151, 0.6534], phi:[0.3904]] | [X:[[0, 2, 0], [0, 0, 2]], M:[[0, 1, -1], [0, -1, 1], [0, 1, -1], [0, 6, 4]], q:[[-1, -6, -4], [-1, -4, -6]], qb:[[1, 4, 4], [1, 0, 0]], phi:[[0, 1, 1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}\phi_{1}^{2}$, ${ }M_{4}$, ${ }M_{1}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }X_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}^{3}$, ${ }M_{4}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$ | ${}\phi_{1}^{2}q_{1}^{2}q_{2}$ | -3 | t^2.34 + t^2.74 + 2*t^2.89 + t^3.03 + t^3.51 + 2*t^4.06 + t^4.2 + 2*t^4.28 + t^4.42 + t^4.43 + t^4.61 + t^4.83 + t^5.09 + 2*t^5.23 + 2*t^5.37 + t^5.45 + t^5.49 + t^5.59 + t^5.6 + 2*t^5.63 + t^5.74 + 4*t^5.78 + 2*t^5.92 - 3*t^6. + t^6.06 - t^6.22 + t^6.26 + 4*t^6.4 - t^6.41 + t^6.55 + 2*t^6.63 + t^6.73 + 2*t^6.76 + 2*t^6.8 + t^6.91 + 6*t^6.95 + 2*t^7.03 + 4*t^7.09 + 2*t^7.17 + 2*t^7.18 + t^7.23 + 3*t^7.31 - t^7.39 + t^7.45 + t^7.46 + 2*t^7.5 - t^7.53 + 2*t^7.57 - t^7.58 + t^7.64 + t^7.72 + t^7.79 + t^7.8 + t^7.83 + 2*t^7.94 + 2*t^7.97 + 8*t^8.12 + t^8.19 - t^8.2 + t^8.23 + 6*t^8.26 - t^8.27 + t^8.34 + 2*t^8.35 + 2*t^8.38 + 3*t^8.41 + 3*t^8.48 + 3*t^8.49 + 3*t^8.52 - t^8.56 + t^8.57 + 3*t^8.62 + 2*t^8.63 + 4*t^8.66 + 2*t^8.67 + t^8.71 - 3*t^8.74 - 2*t^8.75 + t^8.77 + 5*t^8.81 + t^8.84 + t^8.85 - 7*t^8.89 + 2*t^8.95 + t^8.96 - t^8.97 - t^4.17/y - t^5.34/y - t^6.51/y - t^6.92/y - t^7.06/y - t^7.2/y + t^7.28/y - (2*t^7.69)/y + t^7.83/y - t^8.23/y - t^8.45/y + (2*t^8.63)/y + (2*t^8.78)/y + (2*t^8.92)/y - t^4.17*y - t^5.34*y - t^6.51*y - t^6.92*y - t^7.06*y - t^7.2*y + t^7.28*y - 2*t^7.69*y + t^7.83*y - t^8.23*y - t^8.45*y + 2*t^8.63*y + 2*t^8.78*y + 2*t^8.92*y | g2^2*g3^2*t^2.34 + g2^6*g3^4*t^2.74 + (2*g2*t^2.89)/g3 + t^3.03/(g2^4*g3^6) + g2^3*g3^3*t^3.51 + 2*g2^2*t^4.06 + t^4.2/(g2^3*g3^5) + 2*g3^2*t^4.28 + g1^3*g2^9*g3^9*t^4.42 + t^4.43/(g2^5*g3^3) + t^4.61/(g1^3*g2^13*g3^15) + t^4.83/(g1^3*g2^15*g3^13) + g2^8*g3^6*t^5.09 + 2*g2^3*g3*t^5.23 + (2*t^5.37)/(g2^2*g3^4) + g1^3*g2^15*g3^15*t^5.45 + g2^12*g3^8*t^5.49 + g1^3*g2^10*g3^10*t^5.59 + t^5.6/(g2^4*g3^2) + 2*g2^7*g3^3*t^5.63 + g1^3*g2^5*g3^5*t^5.74 + t^5.78/(g1^3*g2^12*g3^14) + (3*g2^2*t^5.78)/g3^2 + (2*t^5.92)/(g2^3*g3^7) - 4*t^6. + t^6./(g1^3*g2^14*g3^12) + t^6.06/(g2^8*g3^12) - (g3^2*t^6.22)/g2^2 + g2^9*g3^7*t^6.26 + 4*g2^4*g3^2*t^6.4 - t^6.41/(g1^3*g2^10*g3^10) + t^6.55/(g2*g3^3) + 2*g2^2*g3^4*t^6.63 + t^6.73/(g1^3*g2^9*g3^15) + 2*g1^3*g2^11*g3^11*t^6.76 + 2*g2^8*g3^4*t^6.8 + g1^3*g2^6*g3^6*t^6.91 + (2*t^6.95)/(g1^3*g2^11*g3^13) + (4*g2^3*t^6.95)/g3 + 2*g2^6*g3^6*t^7.03 + (4*t^7.09)/(g2^2*g3^6) + 2*g2*g3*t^7.17 + (2*t^7.18)/(g1^3*g2^13*g3^11) + t^7.23/(g2^7*g3^11) + (2*t^7.31)/(g2^4*g3^4) + g1^3*g2^10*g3^8*t^7.31 - g1^3*g2^13*g3^15*t^7.39 + t^7.4/(g1^3*g2^15*g3^9) - (g3^3*t^7.4)/g2 + g1^3*g2^5*g3^3*t^7.45 + t^7.46/(g2^9*g3^9) + (2*t^7.5)/(g1^3*g2^12*g3^16) - g1^3*g2^8*g3^10*t^7.53 + 2*g2^5*g3^3*t^7.57 - t^7.58/(g1^3*g2^9*g3^9) + t^7.64/(g1^3*g2^17*g3^21) + t^7.72/g3^2 + g1^3*g2^17*g3^17*t^7.79 - t^7.8/(g1^3*g2^11*g3^7) + 2*g2^3*g3^5*t^7.8 + g2^14*g3^10*t^7.83 + t^7.86/(g1^3*g2^19*g3^19) - t^7.86/(g2^5*g3^7) + t^7.94/g2^2 + g1^3*g2^12*g3^12*t^7.94 + 2*g2^9*g3^5*t^7.97 - t^8.08/(g2^7*g3^5) + g1^3*g2^7*g3^7*t^8.08 + 6*g2^4*t^8.12 + (2*t^8.12)/(g1^3*g2^10*g3^12) + g1^3*g2^21*g3^19*t^8.19 - g2^7*g3^7*t^8.2 + g2^18*g3^12*t^8.23 + (6*t^8.26)/(g2*g3^5) - t^8.27/(g1^3*g2^15*g3^17) - g2^2*g3^2*t^8.34 + 2*g1^3*g2^16*g3^14*t^8.34 + (2*t^8.35)/(g1^3*g2^12*g3^10) + 2*g2^13*g3^7*t^8.38 + (3*t^8.41)/(g2^6*g3^10) + 3*g1^3*g2^11*g3^9*t^8.48 - t^8.49/(g1^3*g2^17*g3^15) + (4*t^8.49)/(g2^3*g3^3) + 3*g2^8*g3^2*t^8.52 - g1^3*g2^14*g3^16*t^8.56 + g3^4*t^8.57 + 3*g1^3*g2^6*g3^4*t^8.62 + (2*t^8.63)/(g2^8*g3^8) + (4*g2^3*t^8.66)/g3^3 + (2*t^8.67)/(g1^3*g2^11*g3^15) + (2*t^8.71)/(g2^5*g3) - g1^3*g2^9*g3^11*t^8.71 - 3*g2^6*g3^4*t^8.74 - (2*t^8.75)/(g1^3*g2^8*g3^8) + (g1^3*g2*t^8.77)/g3 + (2*t^8.81)/(g1^3*g2^16*g3^20) + (3*t^8.81)/(g2^2*g3^8) + g1^6*g2^18*g3^18*t^8.84 + t^8.85/(g2^10*g3^6) + (2*t^8.89)/(g1^3*g2^13*g3^13) - (9*g2*t^8.89)/g3 + (2*t^8.95)/(g2^7*g3^13) + g1^3*g2^18*g3^18*t^8.96 - t^8.97/(g1^3*g2^10*g3^6) - (g2*g3*t^4.17)/y - (g2^2*g3^2*t^5.34)/y - (g2^3*g3^3*t^6.51)/y - (g2^7*g3^5*t^6.92)/y - (g2^2*t^7.06)/y - t^7.2/(g2^3*g3^5*y) + (g3^2*t^7.28)/y - (2*g2^4*g3^4*t^7.69)/y + t^7.83/(g2*g3*y) - (g2^3*g3*t^8.23)/y - (g2*g3^3*t^8.45)/y + (2*g2^7*g3^3*t^8.63)/y + (2*g2^2*t^8.78)/(g3^2*y) + (2*t^8.92)/(g2^3*g3^7*y) - g2*g3*t^4.17*y - g2^2*g3^2*t^5.34*y - g2^3*g3^3*t^6.51*y - g2^7*g3^5*t^6.92*y - g2^2*t^7.06*y - (t^7.2*y)/(g2^3*g3^5) + g3^2*t^7.28*y - 2*g2^4*g3^4*t^7.69*y + (t^7.83*y)/(g2*g3) - g2^3*g3*t^8.23*y - g2*g3^3*t^8.45*y + 2*g2^7*g3^3*t^8.63*y + (2*g2^2*t^8.78*y)/g3^2 + (2*t^8.92*y)/(g2^3*g3^7) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
59039 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}M_{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }M_{2}M_{3}$ | 1.2521 | 1.4537 | 0.8613 | [X:[1.3817, 1.4199], M:[0.9809, 1.0191, 0.9809], q:[0.4016, 0.3635], qb:[0.2166, 0.6134], phi:[0.4008]] | t^2.4 + t^2.93 + 2*t^2.94 + t^3.05 + t^3.61 + t^4.13 + 2*t^4.15 + t^4.25 + 2*t^4.26 + t^4.34 + t^4.59 + t^4.7 + 2*t^5.34 + 2*t^5.35 + 2*t^5.45 + t^5.53 + t^5.54 + t^5.56 + t^5.79 + t^5.86 + 2*t^5.87 + 2*t^5.89 + t^5.91 + t^5.98 + 2*t^5.99 - 4*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y | detail |