Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
61226 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ | 1.4187 | 1.6687 | 0.8502 | [X:[], M:[0.875, 0.875], q:[0.6042, 0.4167], qb:[0.3958, 0.3333], phi:[0.375]] | [X:[], M:[[0], [0]], q:[[1], [-2]], qb:[[-1], [2]], phi:[[0]]] | 1 | {a: 5811/4096, c: 6835/4096, M1: 7/8, M2: 7/8, q1: 29/48, q2: 5/12, qb1: 19/48, qb2: 1/3, phi1: 3/8} |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ | ${}\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$ | -1 | 2*t^2.25 + t^2.44 + 2*t^2.62 + t^2.81 + t^3. + t^3.56 + t^3.94 + t^4.12 + t^4.31 + 5*t^4.5 + 3*t^4.69 + 5*t^4.88 + 5*t^5.06 + 7*t^5.25 + 4*t^5.44 + 4*t^5.62 + 2*t^5.81 - t^6. + 3*t^6.19 + 4*t^6.38 + 6*t^6.56 + 13*t^6.75 + 10*t^6.94 + 14*t^7.12 + 12*t^7.31 + 17*t^7.5 + 14*t^7.69 + 17*t^7.88 + 12*t^8.06 + 6*t^8.25 + 5*t^8.44 + 6*t^8.62 + 12*t^8.81 - t^4.12/y - t^5.25/y - (2*t^6.38)/y - t^6.56/y - (2*t^6.75)/y - t^6.94/y - t^7.12/y + t^7.69/y + (3*t^7.88)/y + (3*t^8.06)/y + (3*t^8.25)/y + (3*t^8.44)/y - t^8.62/y - t^4.12*y - t^5.25*y - 2*t^6.38*y - t^6.56*y - 2*t^6.75*y - t^6.94*y - t^7.12*y + t^7.69*y + 3*t^7.88*y + 3*t^8.06*y + 3*t^8.25*y + 3*t^8.44*y - t^8.62*y | 2*t^2.25 + t^2.44/g1^3 + 2*t^2.62 + g1^3*t^2.81 + t^3. + t^3.56/g1^3 + g1^3*t^3.94 + t^4.12 + g1^3*t^4.31 + 5*t^4.5 + (3*t^4.69)/g1^3 + 4*t^4.88 + t^4.88/g1^6 + (2*t^5.06)/g1^3 + 3*g1^3*t^5.06 + 7*t^5.25 + t^5.44/g1^3 + 3*g1^3*t^5.44 + 3*t^5.62 + g1^6*t^5.62 + (2*t^5.81)/g1^3 - 2*t^6. + t^6./g1^6 + t^6.19/g1^3 + 2*g1^3*t^6.19 + 3*t^6.38 + g1^6*t^6.38 + (2*t^6.56)/g1^3 + 4*g1^3*t^6.56 + 12*t^6.75 + g1^6*t^6.75 + (8*t^6.94)/g1^3 + 2*g1^3*t^6.94 + 8*t^7.12 + (5*t^7.12)/g1^6 + g1^6*t^7.12 + t^7.31/g1^9 + (4*t^7.31)/g1^3 + 7*g1^3*t^7.31 + 15*t^7.5 + (2*t^7.5)/g1^6 + (8*t^7.69)/g1^3 + 6*g1^3*t^7.69 + 13*t^7.88 + t^7.88/g1^6 + 3*g1^6*t^7.88 + (7*t^8.06)/g1^3 + 5*g1^3*t^8.06 - t^8.25 + (3*t^8.25)/g1^6 + 4*g1^6*t^8.25 + t^8.44/g1^9 - (3*t^8.44)/g1^3 + 6*g1^3*t^8.44 + g1^9*t^8.44 + 3*t^8.62 + 3*g1^6*t^8.62 + (7*t^8.81)/g1^3 + 5*g1^3*t^8.81 - t^4.12/y - t^5.25/y - (2*t^6.38)/y - t^6.56/(g1^3*y) - (2*t^6.75)/y - (g1^3*t^6.94)/y - t^7.12/y + t^7.69/(g1^3*y) + (3*t^7.88)/y + (2*t^8.06)/(g1^3*y) + (g1^3*t^8.06)/y + (3*t^8.25)/y + t^8.44/(g1^3*y) + (2*g1^3*t^8.44)/y - t^8.62/y - t^8.81/(g1^3*y) + (g1^3*t^8.81)/y - t^4.12*y - t^5.25*y - 2*t^6.38*y - (t^6.56*y)/g1^3 - 2*t^6.75*y - g1^3*t^6.94*y - t^7.12*y + (t^7.69*y)/g1^3 + 3*t^7.88*y + (2*t^8.06*y)/g1^3 + g1^3*t^8.06*y + 3*t^8.25*y + (t^8.44*y)/g1^3 + 2*g1^3*t^8.44*y - t^8.62*y - (t^8.81*y)/g1^3 + g1^3*t^8.81*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
59470 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{2}\phi_{1}^{3}$ | 1.4517 | 1.7017 | 0.8531 | [X:[], M:[0.875, 0.875], q:[0.5, 0.375], qb:[0.5, 0.375], phi:[0.375]] | 2*t^2.25 + 4*t^2.62 + t^3. + 2*t^3.75 + t^4.12 + 4*t^4.5 + 12*t^4.88 + 15*t^5.25 + 2*t^5.62 + 3*t^6. - t^4.12/y - t^5.25/y - t^4.12*y - t^5.25*y | detail | {a: 2973/2048, c: 3485/2048, M1: 7/8, M2: 7/8, q1: 1/2, q2: 3/8, qb1: 1/2, qb2: 3/8, phi1: 3/8} |