Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
61216 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }\phi_{1}^{5}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ + ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$ + ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ 1.3065 1.519 0.8601 [X:[1.4], M:[1.2], q:[0.5333, 0.3333], qb:[0.4667, 0.2667], phi:[0.4]] [X:[[0]], M:[[0]], q:[[0], [0]], qb:[[0], [0]], phi:[[0]]] 0 {a: 2613/2000, c: 1519/1000, X1: 7/5, M1: 6/5, q1: 8/15, q2: 1/3, qb1: 7/15, qb2: 4/15, phi1: 2/5}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }X_{1}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ ${}M_{1}\phi_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ 2}\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ 2}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$ 10 2*t^2.4 + 2*t^3. + 4*t^3.6 + 4*t^4.2 + 7*t^4.8 + 5*t^5.4 + 10*t^6. + 13*t^6.6 + 23*t^7.2 + 21*t^7.8 + 27*t^8.4 - t^4.2/y - t^5.4/y - (2*t^6.6)/y - t^7.2/y - (2*t^7.8)/y + t^8.4/y - t^4.2*y - t^5.4*y - 2*t^6.6*y - t^7.2*y - 2*t^7.8*y + t^8.4*y 2*t^2.4 + 2*t^3. + 4*t^3.6 + 4*t^4.2 + 7*t^4.8 + 5*t^5.4 + 10*t^6. + 13*t^6.6 + 23*t^7.2 + 21*t^7.8 + 27*t^8.4 - t^4.2/y - t^5.4/y - (2*t^6.6)/y - t^7.2/y - (2*t^7.8)/y + t^8.4/y - t^4.2*y - t^5.4*y - 2*t^6.6*y - t^7.2*y - 2*t^7.8*y + t^8.4*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
59050 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }\phi_{1}^{5}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ + ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$ + ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ 1.323 1.548 0.8547 [X:[1.4], M:[], q:[0.5333, 0.3333], qb:[0.4667, 0.2667], phi:[0.4]] 3*t^2.4 + 2*t^3. + 3*t^3.6 + 4*t^4.2 + 10*t^4.8 + 7*t^5.4 + 11*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail {a: 1323/1000, c: 387/250, X1: 7/5, q1: 8/15, q2: 1/3, qb1: 7/15, qb2: 4/15, phi1: 2/5}