Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
61214 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ | 1.4951 | 1.7241 | 0.8671 | [X:[1.3308], M:[0.9963, 0.6803, 0.6729], q:[0.4944, 0.5018], qb:[0.5056, 0.4907], phi:[0.3346]] | [X:[[0, 2]], M:[[0, 3], [0, -11], [0, -5]], q:[[-1, 12], [-1, 6]], qb:[[1, -12], [1, 0]], phi:[[0, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{3}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$ | ${}$ | -2 | t^2.02 + t^2.04 + t^2.96 + t^2.98 + t^2.99 + t^3. + t^3.02 + t^3.99 + t^4. + t^4.03 + t^4.04 + t^4.06 + t^4.08 + t^4.96 + t^4.97 + t^4.99 + 2*t^5. + 2*t^5.01 + 2*t^5.02 + 2*t^5.03 + 2*t^5.04 + t^5.06 + t^5.46 + t^5.48 + t^5.5 + t^5.51 + t^5.91 + t^5.93 + t^5.94 + t^5.96 + t^5.97 + 2*t^5.98 + t^5.99 - 2*t^6. + 2*t^6.01 + t^6.02 + t^6.03 + 2*t^6.04 + t^6.06 + t^6.07 + t^6.08 + t^6.1 + t^6.12 + t^6.47 + t^6.48 + t^6.5 + t^6.51 + t^6.95 + t^6.97 + 3*t^6.98 + 3*t^6.99 + t^7. + 4*t^7.01 + 4*t^7.03 + 3*t^7.04 + 3*t^7.05 + 3*t^7.06 + 2*t^7.07 + 2*t^7.08 + t^7.1 + t^7.43 + t^7.46 + t^7.48 + t^7.49 + t^7.51 + 2*t^7.52 + 2*t^7.53 + t^7.54 + t^7.55 + t^7.56 + t^7.92 + t^7.93 + 2*t^7.94 + 2*t^7.95 + 3*t^7.96 + 2*t^7.97 + 5*t^7.99 + 4*t^8. + 4*t^8.01 + t^8.02 + 5*t^8.03 - t^8.04 + 3*t^8.05 + 2*t^8.06 + 2*t^8.07 + 2*t^8.09 + t^8.1 + t^8.11 + t^8.12 + t^8.14 + t^8.16 + t^8.42 + t^8.43 + 2*t^8.45 + 2*t^8.46 + 2*t^8.49 + 2*t^8.5 + t^8.52 + t^8.53 + t^8.87 + t^8.89 + t^8.9 + t^8.91 + t^8.92 + 2*t^8.93 + t^8.94 - 2*t^8.96 + 4*t^8.97 - 2*t^8.98 + t^8.99 - t^4./y - t^5.01/y - t^6.02/y - t^6.04/y - t^6.96/y - t^6.98/y - t^6.99/y - t^7./y - (2*t^7.03)/y - t^7.05/y + t^7.06/y + t^7.97/y + t^8./y + (2*t^8.02)/y + t^8.04/y - t^8.09/y + t^8.93/y + t^8.94/y + t^8.96/y + t^8.97/y + t^8.98/y + t^8.99/y - t^4.*y - t^5.01*y - t^6.02*y - t^6.04*y - t^6.96*y - t^6.98*y - t^6.99*y - t^7.*y - 2*t^7.03*y - t^7.05*y + t^7.06*y + t^7.97*y + t^8.*y + 2*t^8.02*y + t^8.04*y - t^8.09*y + t^8.93*y + t^8.94*y + t^8.96*y + t^8.97*y + t^8.98*y + t^8.99*y | t^2.02/g2^5 + t^2.04/g2^11 + g2^12*t^2.96 + g2^6*t^2.98 + g2^3*t^2.99 + t^3. + t^3.02/g2^6 + g2^2*t^3.99 + t^4./g2 + t^4.03/g2^7 + t^4.04/g2^10 + t^4.06/g2^16 + t^4.08/g2^22 + g2^10*t^4.96 + g2^7*t^4.97 + g2^4*t^4.99 + 2*g2*t^5. + (2*t^5.01)/g2^2 + (2*t^5.02)/g2^5 + (2*t^5.03)/g2^8 + (2*t^5.04)/g2^11 + t^5.06/g2^17 + (g1^3*t^5.46)/g2^13 + (g2^29*t^5.48)/g1^3 + (g2^23*t^5.5)/g1^3 + (g1^3*t^5.51)/g2^25 + g2^24*t^5.91 + g2^18*t^5.93 + g2^15*t^5.94 + g2^12*t^5.96 + g2^9*t^5.97 + 2*g2^6*t^5.98 + g2^3*t^5.99 - 2*t^6. + (2*t^6.01)/g2^3 + t^6.02/g2^6 + t^6.03/g2^9 + (2*t^6.04)/g2^12 + t^6.06/g2^15 + t^6.07/g2^18 + t^6.08/g2^21 + t^6.1/g2^27 + t^6.12/g2^33 + (g1^3*t^6.47)/g2^14 + (g2^28*t^6.48)/g1^3 + (g2^22*t^6.5)/g1^3 + (g1^3*t^6.51)/g2^26 + g2^14*t^6.95 + g2^8*t^6.97 + 3*g2^5*t^6.98 + 3*g2^2*t^6.99 + t^7./g2 + (4*t^7.01)/g2^4 + (4*t^7.03)/g2^7 + (3*t^7.04)/g2^10 + (3*t^7.05)/g2^13 + (3*t^7.06)/g2^16 + (2*t^7.07)/g2^19 + (2*t^7.08)/g2^22 + t^7.1/g2^28 + (g1^3*t^7.43)/g2^3 + (g2^33*t^7.46)/g1^3 + (g1^3*t^7.47)/g2^15 - (g2^30*t^7.47)/g1^3 + (g2^27*t^7.48)/g1^3 + (g2^24*t^7.49)/g1^3 + (g2^21*t^7.51)/g1^3 + (g1^3*t^7.52)/g2^27 + (g2^18*t^7.52)/g1^3 + (g1^3*t^7.53)/g2^30 + (g2^15*t^7.53)/g1^3 + (g2^12*t^7.54)/g1^3 + (g1^3*t^7.55)/g2^36 + (g1^3*t^7.56)/g2^39 + g2^22*t^7.92 + g2^19*t^7.93 + 2*g2^16*t^7.94 + 2*g2^13*t^7.95 + 3*g2^10*t^7.96 + 2*g2^7*t^7.97 + 5*g2^4*t^7.99 + 4*g2*t^8. + (4*t^8.01)/g2^2 + t^8.02/g2^5 + (5*t^8.03)/g2^8 - t^8.04/g2^11 + (3*t^8.05)/g2^14 + (2*t^8.06)/g2^17 + (2*t^8.07)/g2^20 + (2*t^8.09)/g2^23 + t^8.1/g2^26 + t^8.11/g2^29 + t^8.12/g2^32 + t^8.14/g2^38 + t^8.16/g2^44 + (g1^3*t^8.42)/g2 + (g2^41*t^8.43)/g1^3 + (g1^3*t^8.45)/g2^10 + (g2^35*t^8.45)/g1^3 + (g1^3*t^8.46)/g2^13 + (g2^32*t^8.46)/g1^3 + (g1^3*t^8.49)/g2^19 + (g2^26*t^8.49)/g1^3 + (g1^3*t^8.5)/g2^22 + (g2^23*t^8.5)/g1^3 + (g2^17*t^8.52)/g1^3 + (g1^3*t^8.53)/g2^31 + g2^36*t^8.87 + g2^30*t^8.89 + g2^27*t^8.9 + g2^24*t^8.91 + g2^21*t^8.92 + 2*g2^18*t^8.93 + g2^15*t^8.94 - 2*g2^12*t^8.96 + 4*g2^9*t^8.97 - 2*g2^6*t^8.98 + g2^3*t^8.99 - t^4./(g2*y) - t^5.01/(g2^2*y) - t^6.02/(g2^6*y) - t^6.04/(g2^12*y) - (g2^11*t^6.96)/y - (g2^5*t^6.98)/y - (g2^2*t^6.99)/y - t^7./(g2*y) - (2*t^7.03)/(g2^7*y) - t^7.05/(g2^13*y) + t^7.06/(g2^16*y) + (g2^7*t^7.97)/y + (g2*t^8.)/y + (2*t^8.02)/(g2^5*y) + t^8.04/(g2^11*y) - t^8.09/(g2^23*y) + (g2^18*t^8.93)/y + (g2^15*t^8.94)/y + (g2^12*t^8.96)/y + (g2^9*t^8.97)/y + (g2^6*t^8.98)/y + (g2^3*t^8.99)/y - (t^4.*y)/g2 - (t^5.01*y)/g2^2 - (t^6.02*y)/g2^6 - (t^6.04*y)/g2^12 - g2^11*t^6.96*y - g2^5*t^6.98*y - g2^2*t^6.99*y - (t^7.*y)/g2 - (2*t^7.03*y)/g2^7 - (t^7.05*y)/g2^13 + (t^7.06*y)/g2^16 + g2^7*t^7.97*y + g2*t^8.*y + (2*t^8.02*y)/g2^5 + (t^8.04*y)/g2^11 - (t^8.09*y)/g2^23 + g2^18*t^8.93*y + g2^15*t^8.94*y + g2^12*t^8.96*y + g2^9*t^8.97*y + g2^6*t^8.98*y + g2^3*t^8.99*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
58105 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ | 1.4742 | 1.6829 | 0.876 | [X:[1.3307], M:[0.9961, 0.6809], q:[0.4941, 0.5019], qb:[0.5059, 0.4903], phi:[0.3346]] | t^2.04 + t^2.95 + t^2.98 + t^2.99 + t^3. + t^3.02 + t^3.98 + t^3.99 + t^4. + t^4.03 + t^4.09 + t^4.96 + t^4.98 + t^5. + t^5.01 + t^5.02 + 2*t^5.03 + t^5.04 + t^5.07 + t^5.46 + t^5.47 + t^5.5 + t^5.51 + t^5.91 + t^5.93 + t^5.94 + t^5.95 + t^5.96 + 2*t^5.98 + t^5.99 - 2*t^6. - t^4./y - t^5.01/y - t^4.*y - t^5.01*y | detail |