Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
61206 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ | 1.4794 | 1.7091 | 0.8656 | [X:[], M:[0.9947, 0.6807], q:[0.4468, 0.4362], qb:[0.5585, 0.5479], phi:[0.3351]] | [X:[], M:[[9], [-24]], q:[[-4], [14]], qb:[[-5], [13]], phi:[[-3]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}\phi_{1}^{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ | ${}\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ | 3 | t^2.01 + t^2.04 + t^2.95 + 3*t^2.98 + t^3.02 + 2*t^3.99 + 2*t^4.02 + t^4.05 + t^4.08 + 3*t^4.96 + 7*t^4.99 + 5*t^5.03 + t^5.06 + t^5.9 + 3*t^5.94 + 7*t^5.97 + 3*t^6. + 3*t^6.03 + 2*t^6.06 + t^6.1 + t^6.13 + 3*t^6.94 + 9*t^6.97 + 12*t^7.01 + 9*t^7.04 + 5*t^7.07 + t^7.1 + 3*t^7.92 + 12*t^7.95 + 17*t^7.98 + 12*t^8.01 + 4*t^8.04 + 3*t^8.07 + 2*t^8.11 + t^8.14 + t^8.17 + t^8.86 + 3*t^8.89 + 7*t^8.92 + 13*t^8.95 + 9*t^8.98 - t^4.01/y - t^5.01/y - t^6.02/y - t^6.05/y - t^6.96/y - (3*t^6.99)/y - (2*t^7.02)/y + t^7.96/y + (2*t^7.99)/y + (2*t^8.03)/y - t^8.09/y + (3*t^8.94)/y + (3*t^8.97)/y - t^4.01*y - t^5.01*y - t^6.02*y - t^6.05*y - t^6.96*y - 3*t^6.99*y - 2*t^7.02*y + t^7.96*y + 2*t^7.99*y + 2*t^8.03*y - t^8.09*y + 3*t^8.94*y + 3*t^8.97*y | t^2.01/g1^6 + t^2.04/g1^24 + g1^27*t^2.95 + 3*g1^9*t^2.98 + t^3.02/g1^9 + 2*g1^6*t^3.99 + (2*t^4.02)/g1^12 + t^4.05/g1^30 + t^4.08/g1^48 + 3*g1^21*t^4.96 + 7*g1^3*t^4.99 + (5*t^5.03)/g1^15 + t^5.06/g1^33 + g1^54*t^5.9 + 3*g1^36*t^5.94 + 7*g1^18*t^5.97 + 3*t^6. + (3*t^6.03)/g1^18 + (2*t^6.06)/g1^36 + t^6.1/g1^54 + t^6.13/g1^72 + 3*g1^33*t^6.94 + 9*g1^15*t^6.97 + (12*t^7.01)/g1^3 + (9*t^7.04)/g1^21 + (5*t^7.07)/g1^39 + t^7.1/g1^57 + 3*g1^48*t^7.92 + 12*g1^30*t^7.95 + 17*g1^12*t^7.98 + (12*t^8.01)/g1^6 + (4*t^8.04)/g1^24 + (3*t^8.07)/g1^42 + (2*t^8.11)/g1^60 + t^8.14/g1^78 + t^8.17/g1^96 + g1^81*t^8.86 + 3*g1^63*t^8.89 + 7*g1^45*t^8.92 + 13*g1^27*t^8.95 + 9*g1^9*t^8.98 - t^4.01/(g1^3*y) - t^5.01/(g1^6*y) - t^6.02/(g1^9*y) - t^6.05/(g1^27*y) - (g1^24*t^6.96)/y - (3*g1^6*t^6.99)/y - (2*t^7.02)/(g1^12*y) + (g1^21*t^7.96)/y + (2*g1^3*t^7.99)/y + (2*t^8.03)/(g1^15*y) - t^8.09/(g1^51*y) + (3*g1^36*t^8.94)/y + (3*g1^18*t^8.97)/y - (t^4.01*y)/g1^3 - (t^5.01*y)/g1^6 - (t^6.02*y)/g1^9 - (t^6.05*y)/g1^27 - g1^24*t^6.96*y - 3*g1^6*t^6.99*y - (2*t^7.02*y)/g1^12 + g1^21*t^7.96*y + 2*g1^3*t^7.99*y + (2*t^8.03*y)/g1^15 - (t^8.09*y)/g1^51 + 3*g1^36*t^8.94*y + 3*g1^18*t^8.97*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
60098 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ | 1.4796 | 1.7105 | 0.865 | [X:[], M:[0.9902, 0.6815], q:[0.4376, 0.4405], qb:[0.561, 0.5415], phi:[0.3366]] | t^2.02 + t^2.04 + t^2.94 + t^2.95 + t^2.97 + 2*t^3. + t^3.95 + 2*t^4.01 + t^4.04 + t^4.06 + t^4.09 + 3*t^4.96 + 3*t^4.97 + t^4.98 + 2*t^4.99 + 5*t^5.02 + t^5.04 + t^5.05 + t^5.87 + t^5.88 + t^5.89 + t^5.91 + t^5.92 + t^5.93 + 3*t^5.94 + t^5.95 + 3*t^5.97 + 2*t^5.98 + t^5.99 - 2*t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y | detail |