Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
61203 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ | 1.4046 | 1.59 | 0.8834 | [X:[1.4066], M:[0.7802, 0.7033, 1.1099], q:[0.5049, 0.5819], qb:[0.7148, 0.4181], phi:[0.2967]] | [X:[[0, 2]], M:[[0, -6], [0, 1], [0, 3]], q:[[-1, 7], [-1, 0]], qb:[[1, -1], [1, 0]], phi:[[0, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }X_{1}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$ | ${}$ | -2 | t^2.11 + t^2.34 + t^2.77 + t^3. + t^3.33 + t^3.66 + t^3.89 + 2*t^4.22 + t^4.45 + 2*t^4.55 + t^4.68 + 2*t^4.78 + t^4.88 + t^5.11 + t^5.34 + 2*t^5.44 + 2*t^5.54 + 3*t^5.67 + t^5.77 + t^5.9 - 2*t^6. + t^6.1 + 3*t^6.33 + 4*t^6.43 + 3*t^6.56 + 4*t^6.66 + 2*t^6.79 + 3*t^6.99 + t^7.02 + t^7.21 + 3*t^7.22 + 5*t^7.32 + 2*t^7.45 + 7*t^7.55 + 2*t^7.68 + 3*t^7.78 + 2*t^7.88 + t^7.91 + 5*t^8.21 + 2*t^8.31 - 2*t^8.34 + t^8.43 + 9*t^8.44 + 2*t^8.54 + 7*t^8.67 + 2*t^8.87 + t^8.9 + t^8.67/y^2 - t^3.89/y - t^4.78/y - t^6./y - t^6.23/y - t^6.66/y - (2*t^6.89)/y - t^7.12/y - t^7.22/y + t^7.45/y - t^7.55/y - t^7.78/y + t^7.88/y - t^8.57/y + t^8.77/y - t^3.89*y - t^4.78*y - t^6.*y - t^6.23*y - t^6.66*y - 2*t^6.89*y - t^7.12*y - t^7.22*y + t^7.45*y - t^7.55*y - t^7.78*y + t^7.88*y - t^8.57*y + t^8.77*y + t^8.67*y^2 | g2*t^2.11 + t^2.34/g2^6 + g2^7*t^2.77 + t^3. + g2^3*t^3.33 + g2^6*t^3.66 + t^3.89/g2 + 2*g2^2*t^4.22 + t^4.45/g2^5 + 2*g2^5*t^4.55 + t^4.68/g2^12 + (2*t^4.78)/g2^2 + g2^8*t^4.88 + g2*t^5.11 + t^5.34/g2^6 + 2*g2^4*t^5.44 + (g1^3*t^5.54)/g2^2 + g2^14*t^5.54 + (2*t^5.67)/g2^3 + (g2^13*t^5.67)/g1^3 + g2^7*t^5.77 + (g2^6*t^5.9)/g1^3 - 2*t^6. + g2^10*t^6.1 + 3*g2^3*t^6.33 + (3*g1^3*t^6.43)/g2^3 + g2^13*t^6.43 + (2*t^6.56)/g2^4 + (g2^12*t^6.56)/g1^3 + 4*g2^6*t^6.66 + t^6.79/g2^11 + (g2^5*t^6.79)/g1^3 + 3*g2^9*t^6.99 + t^7.02/g2^18 + t^7.12/g2^8 - (g2^8*t^7.12)/g1^3 + (g2^18*t^7.21)/g1^3 + 3*g2^2*t^7.22 + (2*g1^3*t^7.32)/g2^4 + 3*g2^12*t^7.32 + t^7.45/g2^5 + (g2^11*t^7.45)/g1^3 + 7*g2^5*t^7.55 - (g1^3*t^7.65)/g2 + g2^15*t^7.65 + t^7.68/g2^12 + (g2^4*t^7.68)/g1^3 + (3*t^7.78)/g2^2 - (g1^3*t^7.88)/g2^8 + 3*g2^8*t^7.88 + t^7.91/(g1^3*g2^3) + t^8.01/g2^9 - (g2^7*t^8.01)/g1^3 + (g1^3*t^8.21)/g2^5 + 4*g2^11*t^8.21 + g1^3*g2^5*t^8.31 + g2^21*t^8.31 - (2*t^8.34)/g2^6 + (g2^20*t^8.43)/g1^3 + 9*g2^4*t^8.44 + (g1^3*t^8.54)/g2^2 + g2^14*t^8.54 + (6*t^8.67)/g2^3 + (g2^13*t^8.67)/g1^3 + g1^3*g2*t^8.87 + g2^17*t^8.87 + (2*t^8.9)/g2^10 - (g2^6*t^8.9)/g1^3 + t^8.67/(g2^3*y^2) - t^3.89/(g2*y) - t^4.78/(g2^2*y) - t^6./y - t^6.23/(g2^7*y) - (g2^6*t^6.66)/y - (2*t^6.89)/(g2*y) - t^7.12/(g2^8*y) - (g2^2*t^7.22)/y + t^7.45/(g2^5*y) - (g2^5*t^7.55)/y - t^7.78/(g2^2*y) + (g2^8*t^7.88)/y - t^8.57/(g2^13*y) + (g2^7*t^8.77)/y - (t^3.89*y)/g2 - (t^4.78*y)/g2^2 - t^6.*y - (t^6.23*y)/g2^7 - g2^6*t^6.66*y - (2*t^6.89*y)/g2 - (t^7.12*y)/g2^8 - g2^2*t^7.22*y + (t^7.45*y)/g2^5 - g2^5*t^7.55*y - (t^7.78*y)/g2^2 + g2^8*t^7.88*y - (t^8.57*y)/g2^13 + g2^7*t^8.77*y + (t^8.67*y^2)/g2^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
58410 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ | 1.4741 | 1.6808 | 0.877 | [X:[1.3386], M:[0.9841, 0.6693, 1.008], q:[0.508, 0.5], qb:[0.508, 0.5], phi:[0.3307]] | t^2.01 + t^2.95 + t^3. + 3*t^3.02 + 4*t^4.02 + t^4.04 + t^4.96 + t^4.98 + 3*t^5.01 + 4*t^5.03 + 2*t^5.52 + 2*t^5.54 + t^5.9 + t^5.95 + t^5.98 - 3*t^6. - t^3.99/y - t^4.98/y - t^6./y - t^3.99*y - t^4.98*y - t^6.*y | detail |