Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
61200 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ 1.3674 1.6511 0.8282 [X:[], M:[0.8692, 0.8607, 0.7308], q:[0.2841, 0.2926], qb:[0.4467, 0.5766], phi:[0.4]] [X:[], M:[[1, 1], [-1, 2], [-1, -1]], q:[[-1, 1], [1, 0]], qb:[[0, -2], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{3}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{3}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{4}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ ${}M_{3}\phi_{1}q_{1}q_{2}^{2}$, ${ 2}\phi_{1}q_{1}^{2}q_{2}^{2}\tilde{q}_{1}$ 1 2*t^2.19 + t^2.22 + t^2.4 + 2*t^2.58 + 2*t^2.61 + t^3.6 + 2*t^3.78 + t^3.81 + 3*t^4.38 + 2*t^4.41 + t^4.44 + 3*t^4.59 + 2*t^4.62 + 4*t^4.77 + 7*t^4.8 + 2*t^4.83 + 4*t^4.98 + 4*t^5.01 + 3*t^5.16 + 4*t^5.19 + 3*t^5.22 + 2*t^5.79 + t^5.82 + 3*t^5.97 + t^6. + t^6.16 + 5*t^6.18 + 4*t^6.21 + t^6.23 + 4*t^6.36 + 4*t^6.39 + 2*t^6.42 + 4*t^6.58 + 3*t^6.6 + 2*t^6.63 + t^6.65 + 5*t^6.78 + 5*t^6.81 + 2*t^6.84 + 6*t^6.97 + 12*t^6.99 + 7*t^7.02 + 2*t^7.04 + 8*t^7.17 + 12*t^7.2 + 4*t^7.23 + 6*t^7.36 + 15*t^7.38 + 13*t^7.41 + 3*t^7.43 + 9*t^7.56 + 10*t^7.59 + 8*t^7.62 + 4*t^7.75 + 6*t^7.77 + 6*t^7.8 + 4*t^7.82 + 3*t^7.98 + 2*t^8.01 + t^8.04 + 4*t^8.17 - t^8.19 - 2*t^8.22 + 2*t^8.35 + 9*t^8.37 + 7*t^8.4 + 3*t^8.43 + t^8.45 + 6*t^8.56 + 6*t^8.58 + t^8.61 + 2*t^8.74 + 13*t^8.76 + 5*t^8.77 + 14*t^8.79 + 4*t^8.8 + 12*t^8.82 + 2*t^8.84 + 2*t^8.85 + t^8.87 + 6*t^8.95 + 7*t^8.97 + 7*t^8.98 - t^4.2/y - t^5.4/y - (2*t^6.39)/y - t^6.42/y - t^6.6/y - (2*t^6.78)/y - (2*t^6.81)/y + t^7.38/y + (2*t^7.41)/y + t^7.59/y + t^7.62/y + (4*t^7.77)/y + (5*t^7.8)/y + (2*t^7.83)/y + t^8.01/y + t^8.16/y + (4*t^8.19)/y + t^8.22/y - (3*t^8.58)/y - (2*t^8.61)/y - t^8.64/y - t^4.2*y - t^5.4*y - 2*t^6.39*y - t^6.42*y - t^6.6*y - 2*t^6.78*y - 2*t^6.81*y + t^7.38*y + 2*t^7.41*y + t^7.59*y + t^7.62*y + 4*t^7.77*y + 5*t^7.8*y + 2*t^7.83*y + t^8.01*y + t^8.16*y + 4*t^8.19*y + t^8.22*y - 3*t^8.58*y - 2*t^8.61*y - t^8.64*y (2*t^2.19)/(g1*g2) + (g1*t^2.22)/g2^2 + t^2.4 + (2*g2^2*t^2.58)/g1 + 2*g1*g2*t^2.61 + t^3.6 + (2*g2^2*t^3.78)/g1 + g1*g2*t^3.81 + (3*t^4.38)/(g1^2*g2^2) + (2*t^4.41)/g2^3 + (g1^2*t^4.44)/g2^4 + (3*t^4.59)/(g1*g2) + (2*g1*t^4.62)/g2^2 + (4*g2*t^4.77)/g1^2 + 7*t^4.8 + (2*g1^2*t^4.83)/g2 + (4*g2^2*t^4.98)/g1 + 4*g1*g2*t^5.01 + (3*g2^4*t^5.16)/g1^2 + 4*g2^3*t^5.19 + 3*g1^2*g2^2*t^5.22 + (2*t^5.79)/(g1*g2) + (g1*t^5.82)/g2^2 + (3*g2*t^5.97)/g1^2 + t^6. + (g2^3*t^6.16)/g1^3 + (5*g2^2*t^6.18)/g1 + 4*g1*g2*t^6.21 + g1^3*t^6.23 + (4*g2^4*t^6.36)/g1^2 + 4*g2^3*t^6.39 + 2*g1^2*g2^2*t^6.42 + (4*t^6.58)/(g1^3*g2^3) + (3*t^6.6)/(g1*g2^4) + (2*g1*t^6.63)/g2^5 + (g1^3*t^6.65)/g2^6 + (5*t^6.78)/(g1^2*g2^2) + (5*t^6.81)/g2^3 + (2*g1^2*t^6.84)/g2^4 + (6*t^6.97)/g1^3 + (12*t^6.99)/(g1*g2) + (7*g1*t^7.02)/g2^2 + (2*g1^3*t^7.04)/g2^3 + (8*g2*t^7.17)/g1^2 + 12*t^7.2 + (4*g1^2*t^7.23)/g2 + (6*g2^3*t^7.36)/g1^3 + (15*g2^2*t^7.38)/g1 + 13*g1*g2*t^7.41 + 3*g1^3*t^7.43 + (9*g2^4*t^7.56)/g1^2 + 10*g2^3*t^7.59 + t^7.62/g2^6 + 7*g1^2*g2^2*t^7.62 + (4*g2^6*t^7.75)/g1^3 + (6*g2^5*t^7.77)/g1 + 6*g1*g2^4*t^7.8 + 4*g1^3*g2^3*t^7.82 + (3*t^7.98)/(g1^2*g2^2) + (2*t^8.01)/g2^3 + (g1^2*t^8.04)/g2^4 + (4*t^8.17)/g1^3 - t^8.19/(g1*g2) - (2*g1*t^8.22)/g2^2 + (2*g2^2*t^8.35)/g1^4 + (9*g2*t^8.37)/g1^2 + 7*t^8.4 + (3*g1^2*t^8.43)/g2 + (g1^4*t^8.45)/g2^2 + (6*g2^3*t^8.56)/g1^3 + (6*g2^2*t^8.58)/g1 + g1*g2*t^8.61 + (2*g2^5*t^8.74)/g1^4 + (13*g2^4*t^8.76)/g1^2 + (5*t^8.77)/(g1^4*g2^4) + 14*g2^3*t^8.79 + (4*t^8.8)/(g1^2*g2^5) + (3*t^8.82)/g2^6 + 9*g1^2*g2^2*t^8.82 + 2*g1^4*g2*t^8.84 + (2*g1^2*t^8.85)/g2^7 + (g1^4*t^8.87)/g2^8 + (6*g2^6*t^8.95)/g1^3 + (7*g2^5*t^8.97)/g1 + (7*t^8.98)/(g1^3*g2^3) - t^4.2/y - t^5.4/y - (2*t^6.39)/(g1*g2*y) - (g1*t^6.42)/(g2^2*y) - t^6.6/y - (2*g2^2*t^6.78)/(g1*y) - (2*g1*g2*t^6.81)/y + t^7.38/(g1^2*g2^2*y) + (2*t^7.41)/(g2^3*y) + t^7.59/(g1*g2*y) + (g1*t^7.62)/(g2^2*y) + (4*g2*t^7.77)/(g1^2*y) + (5*t^7.8)/y + (2*g1^2*t^7.83)/(g2*y) + (g1*g2*t^8.01)/y + (g2^4*t^8.16)/(g1^2*y) + (4*g2^3*t^8.19)/y + (g1^2*g2^2*t^8.22)/y - (3*t^8.58)/(g1^2*g2^2*y) - (2*t^8.61)/(g2^3*y) - (g1^2*t^8.64)/(g2^4*y) - t^4.2*y - t^5.4*y - (2*t^6.39*y)/(g1*g2) - (g1*t^6.42*y)/g2^2 - t^6.6*y - (2*g2^2*t^6.78*y)/g1 - 2*g1*g2*t^6.81*y + (t^7.38*y)/(g1^2*g2^2) + (2*t^7.41*y)/g2^3 + (t^7.59*y)/(g1*g2) + (g1*t^7.62*y)/g2^2 + (4*g2*t^7.77*y)/g1^2 + 5*t^7.8*y + (2*g1^2*t^7.83*y)/g2 + g1*g2*t^8.01*y + (g2^4*t^8.16*y)/g1^2 + 4*g2^3*t^8.19*y + g1^2*g2^2*t^8.22*y - (3*t^8.58*y)/(g1^2*g2^2) - (2*t^8.61*y)/g2^3 - (g1^2*t^8.64*y)/g2^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
58397 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ 1.3478 1.6153 0.8344 [X:[], M:[0.8604, 0.8604], q:[0.2868, 0.2868], qb:[0.4528, 0.5736], phi:[0.4]] 2*t^2.22 + t^2.4 + 4*t^2.58 + t^3.6 + 4*t^3.78 + 3*t^4.44 + 4*t^4.62 + 9*t^4.8 + 8*t^4.98 + 10*t^5.16 + 2*t^5.82 + 3*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail