Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
61192 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$ + ${ }q_{1}\tilde{q}_{2}X_{2}$ 1.2291 1.4279 0.8608 [X:[1.2732, 1.4535], M:[0.907, 0.9099, 0.9099], q:[0.3343, 0.5145], qb:[0.7587, 0.2122], phi:[0.3634]] [X:[[0, -2], [0, 4]], M:[[0, 8], [0, -3], [0, -3]], q:[[-1, -4], [-1, 2]], qb:[[1, -4], [1, 0]], phi:[[0, 1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{2}$, ${ }M_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }X_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}M_{3}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ ${}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}\tilde{q}_{2}X_{1}$ 0 t^2.18 + t^2.72 + 3*t^2.73 + 3*t^3.82 + 2*t^4.36 + t^4.37 + 2*t^4.64 + t^4.9 + 4*t^4.91 + 2*t^5.18 + t^5.44 + 2*t^5.45 + 6*t^5.46 + 2*t^5.73 + 2*t^6.28 + 3*t^6.54 + 8*t^6.55 + 2*t^6.82 + 2*t^7.08 + 4*t^7.09 + 3*t^7.1 + 2*t^7.36 + 6*t^7.37 + t^7.62 + 2*t^7.63 + 11*t^7.64 + 2*t^7.9 + 2*t^7.91 + t^8.16 + 2*t^8.17 + 4*t^8.18 + 12*t^8.19 + 8*t^8.46 + t^8.72 - t^8.73 + t^8.74 - t^4.09/y - t^5.18/y - t^6.27/y - t^6.81/y - (2*t^6.82)/y - t^7.91/y + (2*t^8.45)/y + (3*t^8.46)/y - t^8.99/y - t^4.09*y - t^5.18*y - t^6.27*y - t^6.81*y - 2*t^6.82*y - t^7.91*y + 2*t^8.45*y + 3*t^8.46*y - t^8.99*y g2^2*t^2.18 + g2^8*t^2.72 + (3*t^2.73)/g2^3 + (3*t^3.82)/g2^2 + 2*g2^4*t^4.36 + t^4.37/g2^7 + t^4.64/(g1^3*g2^5) + (g1^3*t^4.64)/g2^3 + g2^10*t^4.9 + (4*t^4.91)/g2 + (g2*t^5.18)/g1^3 + g1^3*g2^3*t^5.18 + g2^16*t^5.44 + 2*g2^5*t^5.45 + (6*t^5.46)/g2^6 + t^5.73/(g1^3*g2^4) + (g1^3*t^5.73)/g2^2 + t^6.28/(g1^3*g2^9) + (g1^3*t^6.28)/g2^7 + 3*g2^6*t^6.54 + (8*t^6.55)/g2^5 + t^6.82/(g1^3*g2^3) + (g1^3*t^6.82)/g2 + 2*g2^12*t^7.08 + 4*g2*t^7.09 + (3*t^7.1)/g2^10 + (g2^3*t^7.36)/g1^3 + g1^3*g2^5*t^7.36 + (3*t^7.37)/(g1^3*g2^8) + (3*g1^3*t^7.37)/g2^6 + g2^18*t^7.62 + 2*g2^7*t^7.63 + (11*t^7.64)/g2^4 + (g2^9*t^7.9)/g1^3 + g1^3*g2^11*t^7.9 + g1^3*t^7.91 + t^7.91/(g1^3*g2^2) + g2^24*t^8.16 + 2*g2^13*t^8.17 + 4*g2^2*t^8.18 + (12*t^8.19)/g2^9 + (4*t^8.46)/(g1^3*g2^7) + (4*g1^3*t^8.46)/g2^5 + g2^8*t^8.72 - t^8.73/g2^3 + t^8.74/g2^14 - (g2*t^4.09)/y - (g2^2*t^5.18)/y - (g2^3*t^6.27)/y - (g2^9*t^6.81)/y - (2*t^6.82)/(g2^2*y) - t^7.91/(g2*y) + (2*g2^5*t^8.45)/y + (3*t^8.46)/(g2^6*y) - (g2^11*t^8.99)/y - g2*t^4.09*y - g2^2*t^5.18*y - g2^3*t^6.27*y - g2^9*t^6.81*y - (2*t^6.82*y)/g2^2 - (t^7.91*y)/g2 + 2*g2^5*t^8.45*y + (3*t^8.46*y)/g2^6 - g2^11*t^8.99*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
58468 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{3}\phi_{1}^{3}$ 1.4331 1.6694 0.8584 [X:[1.2438], M:[1.025, 0.8656, 0.8656], q:[0.4875, 0.3781], qb:[0.4875, 0.3781], phi:[0.3781]] t^2.27 + 4*t^2.6 + t^3.07 + 3*t^3.73 + t^4.06 + 2*t^4.54 + 8*t^4.87 + 13*t^5.19 + t^5.34 + 2*t^5.67 + t^6. - t^4.13/y - t^5.27/y - t^4.13*y - t^5.27*y detail