Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
61190 | SU3adj1nf2 | ${}\phi_{1}^{5}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{1}$ | 1.3526 | 1.629 | 0.8303 | [X:[], M:[1.0887, 0.8, 0.6887], q:[0.5982, 0.4035], qb:[0.3131, 0.2852], phi:[0.4]] | [X:[], M:[[-2, -1], [0, 0], [-2, -1]], q:[[1, 1], [-2, -2]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}^{3}$ | ${2}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ 2}\phi_{1}q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$ | 1 | 2*t^2.07 + t^2.15 + 2*t^2.4 + t^2.65 + 2*t^3.27 + t^3.35 + 2*t^3.85 + t^3.93 + 3*t^4.13 + 2*t^4.22 + t^4.3 + 5*t^4.47 + 3*t^4.55 + 2*t^4.72 + 4*t^4.8 + 4*t^5.05 + 2*t^5.13 + t^5.3 + 4*t^5.33 + 4*t^5.42 + t^5.5 + 4*t^5.67 + 2*t^5.75 + 5*t^5.92 + t^6. + t^6.17 + 4*t^6.2 + 5*t^6.25 + 3*t^6.28 + 3*t^6.33 + 2*t^6.37 + t^6.42 + t^6.45 + 2*t^6.5 + 11*t^6.53 - t^6.58 + 9*t^6.62 + 4*t^6.7 + 3*t^6.78 + 9*t^6.87 + 5*t^6.95 + 11*t^7.12 + 11*t^7.2 + t^7.23 + t^7.28 + 2*t^7.37 + 6*t^7.4 + 6*t^7.45 + 7*t^7.48 + 2*t^7.53 + 4*t^7.57 + t^7.65 + 6*t^7.7 + 10*t^7.73 + 11*t^7.82 + 3*t^7.9 + t^7.95 + 8*t^7.98 + 6*t^8.07 + 2*t^8.23 + 5*t^8.26 + 16*t^8.32 + 4*t^8.35 + 8*t^8.4 + 3*t^8.43 + 3*t^8.48 + 2*t^8.52 + 7*t^8.57 + 18*t^8.6 + 2*t^8.65 + 17*t^8.68 + 10*t^8.77 + 2*t^8.82 + 8*t^8.85 + 7*t^8.9 + 21*t^8.93 + t^8.98 - t^4.2/y - t^5.4/y - (2*t^6.27)/y - t^6.35/y - (2*t^6.6)/y - t^6.85/y + t^7.13/y + (2*t^7.22)/y + t^7.47/y + t^7.55/y + (2*t^7.72)/y + t^7.8/y + t^8.05/y + t^8.13/y + t^8.33/y + (2*t^8.42)/y - (2*t^8.67)/y - t^8.75/y + (4*t^8.92)/y - t^4.2*y - t^5.4*y - 2*t^6.27*y - t^6.35*y - 2*t^6.6*y - t^6.85*y + t^7.13*y + 2*t^7.22*y + t^7.47*y + t^7.55*y + 2*t^7.72*y + t^7.8*y + t^8.05*y + t^8.13*y + t^8.33*y + 2*t^8.42*y - 2*t^8.67*y - t^8.75*y + 4*t^8.92*y | (2*t^2.07)/(g1^2*g2) + t^2.15/(g1*g2^2) + 2*t^2.4 + g1*g2^2*t^2.65 + (2*t^3.27)/(g1^2*g2) + t^3.35/(g1*g2^2) + 2*g1*g2^2*t^3.85 + g1^2*g2*t^3.93 + (3*t^4.13)/(g1^4*g2^2) + (2*t^4.22)/(g1^3*g2^3) + t^4.3/(g1^2*g2^4) + (5*t^4.47)/(g1^2*g2) + (3*t^4.55)/(g1*g2^2) + (2*g2*t^4.72)/g1 + 4*t^4.8 + 4*g1*g2^2*t^5.05 + 2*g1^2*g2*t^5.13 + g1^2*g2^4*t^5.3 + (4*t^5.33)/(g1^4*g2^2) + (4*t^5.42)/(g1^3*g2^3) + t^5.5/(g1^2*g2^4) + (4*t^5.67)/(g1^2*g2) + (2*t^5.75)/(g1*g2^2) + (5*g2*t^5.92)/g1 + t^6. + g2^3*t^6.17 + (4*t^6.2)/(g1^6*g2^3) + 5*g1*g2^2*t^6.25 + (3*t^6.28)/(g1^5*g2^4) + 3*g1^2*g2*t^6.33 + (2*t^6.37)/(g1^4*g2^5) + g1^3*t^6.42 + t^6.45/(g1^3*g2^6) + 2*g1^2*g2^4*t^6.5 + (11*t^6.53)/(g1^4*g2^2) - g1^3*g2^3*t^6.58 + (9*t^6.62)/(g1^3*g2^3) + (4*t^6.7)/(g1^2*g2^4) + (3*t^6.78)/g1^3 + (9*t^6.87)/(g1^2*g2) + (5*t^6.95)/(g1*g2^2) + (11*g2*t^7.12)/g1 + 11*t^7.2 + t^7.23/(g1^6*g2^6) + (g1*t^7.28)/g2 + 2*g2^3*t^7.37 + (6*t^7.4)/(g1^6*g2^3) + 6*g1*g2^2*t^7.45 + (7*t^7.48)/(g1^5*g2^4) + 2*g1^2*g2*t^7.53 + (4*t^7.57)/(g1^4*g2^5) + t^7.65/(g1^3*g2^6) + 6*g1^2*g2^4*t^7.7 + (10*t^7.73)/(g1^4*g2^2) + (11*t^7.82)/(g1^3*g2^3) + (3*t^7.9)/(g1^2*g2^4) + g1^3*g2^6*t^7.95 + (8*t^7.98)/g1^3 + (6*t^8.07)/(g1^2*g2) + (2*g2^2*t^8.23)/g1^2 + (5*t^8.26)/(g1^8*g2^4) + (16*g2*t^8.32)/g1 + (4*t^8.35)/(g1^7*g2^5) + 8*t^8.4 + (3*t^8.43)/(g1^6*g2^6) + (3*g1*t^8.48)/g2 + (2*t^8.52)/(g1^5*g2^7) + (g1^2*t^8.57)/g2^2 + 6*g2^3*t^8.57 + t^8.6/(g1^4*g2^8) + (17*t^8.6)/(g1^6*g2^3) + 2*g1*g2^2*t^8.65 + (17*t^8.68)/(g1^5*g2^4) + (10*t^8.77)/(g1^4*g2^5) + g1^3*t^8.82 + g1*g2^5*t^8.82 + (4*t^8.85)/(g1^3*g2^6) + (4*t^8.85)/(g1^5*g2) + 7*g1^2*g2^4*t^8.9 + (21*t^8.93)/(g1^4*g2^2) + g1^3*g2^3*t^8.98 - t^4.2/y - t^5.4/y - (2*t^6.27)/(g1^2*g2*y) - t^6.35/(g1*g2^2*y) - (2*t^6.6)/y - (g1*g2^2*t^6.85)/y + t^7.13/(g1^4*g2^2*y) + (2*t^7.22)/(g1^3*g2^3*y) + t^7.47/(g1^2*g2*y) + t^7.55/(g1*g2^2*y) + (2*g2*t^7.72)/(g1*y) + t^7.8/y + (g1*g2^2*t^8.05)/y + (g1^2*g2*t^8.13)/y + t^8.33/(g1^4*g2^2*y) + (2*t^8.42)/(g1^3*g2^3*y) - (2*t^8.67)/(g1^2*g2*y) - t^8.75/(g1*g2^2*y) + (4*g2*t^8.92)/(g1*y) - t^4.2*y - t^5.4*y - (2*t^6.27*y)/(g1^2*g2) - (t^6.35*y)/(g1*g2^2) - 2*t^6.6*y - g1*g2^2*t^6.85*y + (t^7.13*y)/(g1^4*g2^2) + (2*t^7.22*y)/(g1^3*g2^3) + (t^7.47*y)/(g1^2*g2) + (t^7.55*y)/(g1*g2^2) + (2*g2*t^7.72*y)/g1 + t^7.8*y + g1*g2^2*t^8.05*y + g1^2*g2*t^8.13*y + (t^8.33*y)/(g1^4*g2^2) + (2*t^8.42*y)/(g1^3*g2^3) - (2*t^8.67*y)/(g1^2*g2) - (t^8.75*y)/(g1*g2^2) + (4*g2*t^8.92*y)/g1 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
58847 | SU3adj1nf2 | ${}\phi_{1}^{5}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ | 1.3319 | 1.5887 | 0.8384 | [X:[], M:[1.0922, 0.8], q:[0.597, 0.4059], qb:[0.3107, 0.2863], phi:[0.4]] | t^2.08 + t^2.15 + 2*t^2.4 + t^2.65 + 2*t^3.28 + t^3.35 + 2*t^3.85 + 2*t^3.92 + t^4.15 + t^4.23 + t^4.3 + 3*t^4.48 + 3*t^4.55 + t^4.73 + 4*t^4.8 + 4*t^5.05 + 2*t^5.12 + t^5.3 + 2*t^5.35 + 3*t^5.43 + t^5.5 + 4*t^5.68 + 2*t^5.75 + 3*t^5.93 + t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y | detail |