Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
61182 | SU3adj1nf2 | ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ | 1.394 | 1.6325 | 0.8539 | [X:[], M:[0.7837, 1.202, 1.198], q:[0.4067, 0.3885], qb:[0.4095, 0.3952], phi:[0.4]] | [X:[], M:[[1, 1], [-1, 2], [1, -2]], q:[[-1, 1], [1, 0]], qb:[[0, -2], [0, 1]], phi:[[0, 0]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{4}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$ | ${}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$ | -1 | 2*t^2.35 + t^2.4 + t^2.45 + t^3.55 + 2*t^3.59 + t^3.6 + 2*t^3.61 + 3*t^4.7 + 4*t^4.75 + t^4.79 + 4*t^4.8 + 2*t^4.81 + t^4.84 + 2*t^4.85 + t^4.9 + 2*t^5.9 + 7*t^5.95 + 3*t^5.96 + 2*t^5.99 - t^6. + 3*t^6.01 + 2*t^6.04 + 2*t^6.05 + 4*t^7.05 + 9*t^7.1 + 13*t^7.15 + 5*t^7.16 + 6*t^7.19 + 9*t^7.2 + 7*t^7.21 + 2*t^7.24 + 4*t^7.25 + t^7.26 + 2*t^7.29 + 2*t^7.3 + t^7.35 + 3*t^8.25 + 12*t^8.3 + 4*t^8.31 + 6*t^8.35 + 7*t^8.36 + 7*t^8.39 + 3*t^8.4 + 8*t^8.41 + 4*t^8.44 + t^8.49 + 2*t^8.5 - t^4.2/y - t^5.4/y - (2*t^6.55)/y - t^6.6/y - t^6.65/y + t^7.7/y - t^7.79/y + t^7.8/y - t^7.81/y + t^7.85/y - t^8.9/y + (4*t^8.95)/y + (4*t^8.96)/y - t^4.2*y - t^5.4*y - 2*t^6.55*y - t^6.6*y - t^6.65*y + t^7.7*y - t^7.79*y + t^7.8*y - t^7.81*y + t^7.85*y - t^8.9*y + 4*t^8.95*y + 4*t^8.96*y | 2*g1*g2*t^2.35 + t^2.4 + t^2.45/(g1*g2) + g1*g2*t^3.55 + (2*g1*t^3.59)/g2^2 + t^3.6 + (2*g2^2*t^3.61)/g1 + 3*g1^2*g2^2*t^4.7 + 4*g1*g2*t^4.75 + (g1*t^4.79)/g2^2 + 4*t^4.8 + (2*g2^2*t^4.81)/g1 + t^4.84/g2^3 + (2*t^4.85)/(g1*g2) + t^4.9/(g1^2*g2^2) + 2*g1^2*g2^2*t^5.9 + (3*g1^2*t^5.95)/g2 + 4*g1*g2*t^5.95 + 3*g2^3*t^5.96 + (2*g1*t^5.99)/g2^2 - t^6. + (3*g2^2*t^6.01)/g1 + (2*t^6.04)/g2^3 + t^6.05/(g1*g2) + (g2*t^6.05)/g1^2 + 4*g1^3*g2^3*t^7.05 + g1^3*t^7.1 + 8*g1^2*g2^2*t^7.1 + (3*g1^2*t^7.15)/g2 + 10*g1*g2*t^7.15 + 5*g2^3*t^7.16 + (3*g1^2*t^7.19)/g2^4 + (3*g1*t^7.19)/g2^2 + 9*t^7.2 + (4*g2^2*t^7.21)/g1 + (3*g2^4*t^7.21)/g1^2 + (2*t^7.24)/g2^3 + (3*t^7.25)/(g1*g2) + (g2*t^7.25)/g1^2 + (g2^3*t^7.26)/g1^3 + t^7.29/g2^6 + t^7.29/(g1*g2^4) + (2*t^7.3)/(g1^2*g2^2) + t^7.35/(g1^3*g2^3) + 3*g1^3*g2^3*t^8.25 + 4*g1^3*t^8.3 + 8*g1^2*g2^2*t^8.3 + 4*g1*g2^4*t^8.31 + (6*g1^2*t^8.35)/g2 + 7*g2^3*t^8.36 + (2*g1^2*t^8.39)/g2^4 + (5*g1*t^8.39)/g2^2 + 3*t^8.4 + (5*g2^2*t^8.41)/g1 + (3*g2^4*t^8.41)/g1^2 + (g1*t^8.44)/g2^5 + (3*t^8.44)/g2^3 - (2*t^8.45)/(g1*g2) + (2*g2*t^8.45)/g1^2 + t^8.49/(g1*g2^4) + t^8.5/g1^3 + t^8.5/(g1^2*g2^2) - t^4.2/y - t^5.4/y - (2*g1*g2*t^6.55)/y - t^6.6/y - t^6.65/(g1*g2*y) + (g1^2*g2^2*t^7.7)/y - (g1*t^7.79)/(g2^2*y) + t^7.8/y - (g2^2*t^7.81)/(g1*y) + t^7.85/(g1*g2*y) - (g1^2*g2^2*t^8.9)/y + (4*g1^2*t^8.95)/(g2*y) + (4*g2^3*t^8.96)/y - t^4.2*y - t^5.4*y - 2*g1*g2*t^6.55*y - t^6.6*y - (t^6.65*y)/(g1*g2) + g1^2*g2^2*t^7.7*y - (g1*t^7.79*y)/g2^2 + t^7.8*y - (g2^2*t^7.81*y)/g1 + (t^7.85*y)/(g1*g2) - g1^2*g2^2*t^8.9*y + (4*g1^2*t^8.95*y)/g2 + 4*g2^3*t^8.96*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
58360 | SU3adj1nf2 | ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ | 1.394 | 1.6326 | 0.8539 | [X:[], M:[0.7823, 1.2, 1.2], q:[0.4088, 0.3912], qb:[0.4088, 0.3912], phi:[0.4]] | 2*t^2.35 + t^2.4 + t^2.45 + t^3.55 + 5*t^3.6 + 3*t^4.69 + 3*t^4.75 + 2*t^4.77 + 5*t^4.8 + 2*t^4.83 + 2*t^4.85 + t^4.91 + 2*t^5.89 + 9*t^5.95 + 2*t^5.97 + 2*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y | detail |