Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
61181 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ 1.303 1.555 0.8379 [X:[], M:[0.7839, 1.1839], q:[0.5333, 0.5333], qb:[0.2828, 0.2506], phi:[0.4]] [X:[], M:[[1], [1]], q:[[0], [0]], qb:[[-1], [1]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$, ${ }M_{1}M_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}\tilde{q}_{2}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}^{3}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}\tilde{q}_{2}^{2}$ ${}\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ 2}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ 2}\phi_{1}q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$ 5 3*t^2.35 + t^2.4 + t^2.45 + 4*t^3.55 + t^3.6 + 2*t^3.65 + 6*t^4.7 + 6*t^4.75 + 4*t^4.8 + 4*t^4.85 + t^4.9 + t^5.86 + 11*t^5.9 + 8*t^5.95 + 5*t^6. + 4*t^6.05 + t^6.1 + t^6.14 + 10*t^7.06 + 22*t^7.1 + 13*t^7.15 + 15*t^7.2 + 6*t^7.25 + 4*t^7.3 + t^7.34 + 3*t^8.21 + 21*t^8.26 + 28*t^8.3 + 11*t^8.35 + 21*t^8.4 + 3*t^8.45 + 7*t^8.5 + t^8.54 + t^8.59 - t^4.2/y - t^5.4/y - (3*t^6.55)/y - t^6.6/y - t^6.65/y + (3*t^7.7)/y - t^7.75/y + (2*t^7.8)/y + t^7.85/y + (6*t^8.9)/y + t^8.95/y - t^4.2*y - t^5.4*y - 3*t^6.55*y - t^6.6*y - t^6.65*y + 3*t^7.7*y - t^7.75*y + 2*t^7.8*y + t^7.85*y + 6*t^8.9*y + t^8.95*y 3*g1*t^2.35 + t^2.4 + t^2.45/g1 + 4*g1*t^3.55 + t^3.6 + (2*t^3.65)/g1 + 6*g1^2*t^4.7 + 6*g1*t^4.75 + 4*t^4.8 + (4*t^4.85)/g1 + t^4.9/g1^2 + g1^3*t^5.86 + 11*g1^2*t^5.9 + 8*g1*t^5.95 + 5*t^6. + (4*t^6.05)/g1 + t^6.1/g1^2 + t^6.14/g1^3 + 10*g1^3*t^7.06 + 22*g1^2*t^7.1 + 13*g1*t^7.15 + 15*t^7.2 + (6*t^7.25)/g1 + (4*t^7.3)/g1^2 + t^7.34/g1^3 + 3*g1^4*t^8.21 + 21*g1^3*t^8.26 + 28*g1^2*t^8.3 + 11*g1*t^8.35 + 21*t^8.4 + (3*t^8.45)/g1 + (7*t^8.5)/g1^2 + t^8.54/g1^3 + t^8.59/g1^4 - t^4.2/y - t^5.4/y - (3*g1*t^6.55)/y - t^6.6/y - t^6.65/(g1*y) + (3*g1^2*t^7.7)/y - (g1*t^7.75)/y + (2*t^7.8)/y + t^7.85/(g1*y) + (6*g1^2*t^8.9)/y + (g1*t^8.95)/y - t^4.2*y - t^5.4*y - 3*g1*t^6.55*y - t^6.6*y - (t^6.65*y)/g1 + 3*g1^2*t^7.7*y - g1*t^7.75*y + 2*t^7.8*y + (t^7.85*y)/g1 + 6*g1^2*t^8.9*y + g1*t^8.95*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
58369 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ 1.3361 1.6 0.8351 [X:[], M:[0.6887, 1.0887], q:[0.5982, 0.4035], qb:[0.3131, 0.2852], phi:[0.4]] 2*t^2.07 + t^2.15 + t^2.4 + t^2.65 + 2*t^3.27 + t^3.35 + t^3.6 + 2*t^3.85 + t^3.93 + 3*t^4.13 + 2*t^4.22 + t^4.3 + 3*t^4.47 + 2*t^4.55 + 2*t^4.72 + 2*t^4.8 + 3*t^5.05 + 2*t^5.13 + t^5.3 + 4*t^5.33 + 4*t^5.42 + t^5.5 + 4*t^5.67 + 2*t^5.75 + 5*t^5.92 + 2*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail