Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
61180 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{2}$ 1.4277 1.6926 0.8435 [X:[], M:[0.7803, 1.1803, 0.8], q:[0.4198, 0.3805], qb:[0.3998, 0.3998], phi:[0.4]] [X:[], M:[[1, 1], [1, 1], [0, 0]], q:[[-1, -2], [1, 0]], qb:[[0, 1], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ ${2}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ 2}\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ 2 3*t^2.34 + 2*t^2.4 + t^2.46 + 3*t^3.54 + t^3.66 + 6*t^4.68 + 9*t^4.74 + 8*t^4.8 + 5*t^4.86 + t^4.92 + 8*t^5.88 + 7*t^5.94 + 2*t^6. + 3*t^6.06 + 11*t^7.02 + 26*t^7.08 + 25*t^7.14 + 25*t^7.2 + 12*t^7.26 + 5*t^7.32 + 2*t^7.38 + 15*t^8.22 + 25*t^8.28 + 11*t^8.34 + 7*t^8.4 - 2*t^8.46 + t^8.52 - t^4.2/y - t^5.4/y - (3*t^6.54)/y - (2*t^6.6)/y - t^6.66/y + (3*t^7.68)/y + (2*t^7.74)/y + (3*t^7.8)/y + (2*t^7.86)/y + (3*t^8.88)/y - (3*t^8.94)/y - t^4.2*y - t^5.4*y - 3*t^6.54*y - 2*t^6.6*y - t^6.66*y + 3*t^7.68*y + 2*t^7.74*y + 3*t^7.8*y + 2*t^7.86*y + 3*t^8.88*y - 3*t^8.94*y 3*g1*g2*t^2.34 + 2*t^2.4 + t^2.46/(g1*g2) + 3*g1*g2*t^3.54 + t^3.66/(g1*g2) + 6*g1^2*g2^2*t^4.68 + (g1*t^4.74)/g2^2 + 8*g1*g2*t^4.74 + 6*t^4.8 + 2*g2^3*t^4.8 + t^4.86/(g1*g2^4) + (4*t^4.86)/(g1*g2) + t^4.92/(g1^2*g2^2) + 8*g1^2*g2^2*t^5.88 + (g1*t^5.94)/g2^2 + 6*g1*g2*t^5.94 + 2*g2^3*t^6. + t^6.06/(g1*g2^4) + (2*t^6.06)/(g1*g2) + g1^3*t^7.02 + 10*g1^3*g2^3*t^7.02 + (3*g1^2*t^7.08)/g2 + 23*g1^2*g2^2*t^7.08 + (3*g1*t^7.14)/g2^2 + 17*g1*g2*t^7.14 + 5*g1*g2^4*t^7.14 + 15*t^7.2 + (2*t^7.2)/g2^3 + 8*g2^3*t^7.2 + (3*t^7.26)/(g1*g2^4) + (8*t^7.26)/(g1*g2) + (g2^2*t^7.26)/g1 + t^7.32/(g1^2*g2^5) + (4*t^7.32)/(g1^2*g2^2) + t^7.38/(g1^3*g2^6) + t^7.38/(g1^3*g2^3) + 15*g1^3*g2^3*t^8.22 + (4*g1^2*t^8.28)/g2 + 21*g1^2*g2^2*t^8.28 + (g1*t^8.34)/g2^2 + 3*g1*g2*t^8.34 + 7*g1*g2^4*t^8.34 + 3*t^8.4 + (2*t^8.4)/g2^3 + 2*g2^3*t^8.4 + t^8.46/(g1*g2^4) - (2*t^8.46)/(g1*g2) - (g2^2*t^8.46)/g1 + t^8.52/(g1^2*g2^2) - t^4.2/y - t^5.4/y - (3*g1*g2*t^6.54)/y - (2*t^6.6)/y - t^6.66/(g1*g2*y) + (3*g1^2*g2^2*t^7.68)/y + (2*g1*g2*t^7.74)/y + (3*t^7.8)/y + (2*t^7.86)/(g1*g2*y) + (3*g1^2*g2^2*t^8.88)/y - (3*g1*g2*t^8.94)/y - t^4.2*y - t^5.4*y - 3*g1*g2*t^6.54*y - 2*t^6.6*y - (t^6.66*y)/(g1*g2) + 3*g1^2*g2^2*t^7.68*y + 2*g1*g2*t^7.74*y + 3*t^7.8*y + (2*t^7.86*y)/(g1*g2) + 3*g1^2*g2^2*t^8.88*y - 3*g1*g2*t^8.94*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
58371 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{3}$ 1.4288 1.6962 0.8424 [X:[], M:[0.7613, 1.1613, 0.8], q:[0.4193, 0.3807], qb:[0.4193, 0.3807], phi:[0.4]] 2*t^2.28 + 4*t^2.4 + 2*t^3.48 + 2*t^3.6 + 3*t^4.57 + 9*t^4.68 + 2*t^4.74 + 12*t^4.8 + 2*t^4.86 + t^4.92 + 4*t^5.77 + 10*t^5.88 + 2*t^5.94 + 4*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail