Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
61168 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}^{2}$ + ${ }q_{1}\tilde{q}_{2}X_{1}$ + ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}\tilde{q}_{2}X_{2}$ + ${ }M_{2}\phi_{1}^{3}$ 1.0446 1.2589 0.8298 [X:[1.4286, 1.7143], M:[1.0, 0.7143], q:[0.4762, 0.1905], qb:[0.6667, 0.0952], phi:[0.4286]] [X:[[0], [0]], M:[[0], [0]], q:[[-1], [-1]], qb:[[1], [1]], phi:[[0]]] 1 {a: 117/112, c: 141/112, X1: 10/7, X2: 12/7, M1: 1, M2: 5/7, q1: 10/21, q2: 4/21, qb1: 2/3, qb2: 2/21, phi1: 3/7}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }X_{1}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }X_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{3}q_{2}^{3}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}^{3}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ ${}\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }M_{2}\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{4}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{3}\tilde{q}_{2}$, ${ 2}\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}\tilde{q}_{2}^{3}$ 8 2*t^2.14 + 2*t^2.57 + t^3. + 2*t^3.43 + 3*t^3.86 + 4*t^4.29 + 7*t^4.71 + 8*t^5.14 + 6*t^5.57 + 8*t^6. + 12*t^6.43 + 14*t^6.86 + 18*t^7.29 + 21*t^7.71 + 18*t^8.14 + 24*t^8.57 - t^4.29/y - t^5.57/y - t^6.43/y - (2*t^6.86)/y + t^7.29/y + (2*t^7.71)/y + t^8.14/y + (5*t^8.57)/y - t^4.29*y - t^5.57*y - t^6.43*y - 2*t^6.86*y + t^7.29*y + 2*t^7.71*y + t^8.14*y + 5*t^8.57*y 2*t^2.14 + 2*t^2.57 + t^3. + 2*t^3.43 + t^3.86 + t^3.86/g1^3 + g1^3*t^3.86 + 4*t^4.29 + 5*t^4.71 + t^4.71/g1^3 + g1^3*t^4.71 + 6*t^5.14 + t^5.14/g1^3 + g1^3*t^5.14 + 4*t^5.57 + t^5.57/g1^3 + g1^3*t^5.57 + 4*t^6. + (2*t^6.)/g1^3 + 2*g1^3*t^6. + 8*t^6.43 + (2*t^6.43)/g1^3 + 2*g1^3*t^6.43 + 10*t^6.86 + (2*t^6.86)/g1^3 + 2*g1^3*t^6.86 + 12*t^7.29 + (3*t^7.29)/g1^3 + 3*g1^3*t^7.29 + 13*t^7.71 + t^7.71/g1^6 + (3*t^7.71)/g1^3 + 3*g1^3*t^7.71 + g1^6*t^7.71 + 6*t^8.14 + (6*t^8.14)/g1^3 + 6*g1^3*t^8.14 + 14*t^8.57 + t^8.57/g1^6 + (4*t^8.57)/g1^3 + 4*g1^3*t^8.57 + g1^6*t^8.57 - t^4.29/y - t^5.57/y - t^6.43/y - (2*t^6.86)/y + t^7.29/y + (2*t^7.71)/y + t^8.14/y + (5*t^8.57)/y - t^4.29*y - t^5.57*y - t^6.43*y - 2*t^6.86*y + t^7.29*y + 2*t^7.71*y + t^8.14*y + 5*t^8.57*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
60493 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}^{2}$ + ${ }q_{1}\tilde{q}_{2}X_{1}$ + ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}\tilde{q}_{2}X_{2}$ 1.0244 1.2208 0.8391 [X:[1.4286, 1.7143], M:[1.0], q:[0.4762, 0.1905], qb:[0.6667, 0.0952], phi:[0.4286]] t^2.14 + 2*t^2.57 + t^3. + 2*t^3.43 + 4*t^3.86 + 2*t^4.29 + 5*t^4.71 + 7*t^5.14 + 4*t^5.57 + 6*t^6. - t^4.29/y - t^5.57/y - t^4.29*y - t^5.57*y detail {a: 2811/2744, c: 1675/1372, X1: 10/7, X2: 12/7, M1: 1, q1: 10/21, q2: 4/21, qb1: 2/3, qb2: 2/21, phi1: 3/7}