Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
61161 | SU3adj1nf2 | ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ | 1.3416 | 1.6051 | 0.8359 | [X:[], M:[0.7105, 0.8, 1.2747], q:[0.5881, 0.4238], qb:[0.3015, 0.2866], phi:[0.4]] | [X:[], M:[[-2, -1], [0, 0], [1, 2]], q:[[1, 1], [-2, -2]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}^{3}$ | ${2}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$ | 0 | 2*t^2.13 + 2*t^2.4 + t^2.62 + t^2.67 + t^3.33 + t^3.38 + 3*t^3.82 + t^3.87 + 3*t^4.26 + 5*t^4.53 + t^4.58 + 2*t^4.76 + 5*t^4.8 + 4*t^5.02 + 4*t^5.07 + t^5.25 + t^5.29 + t^5.34 + 2*t^5.46 + 2*t^5.51 + 2*t^5.73 + 2*t^5.78 + 6*t^5.96 + t^6.18 + 7*t^6.22 + 3*t^6.27 + t^6.31 + 4*t^6.39 + 3*t^6.45 + 2*t^6.49 + t^6.54 + 9*t^6.66 + 3*t^6.71 + t^6.75 + 3*t^6.89 + 10*t^6.93 + t^6.98 + 10*t^7.16 + 12*t^7.2 + 2*t^7.38 + t^7.41 + 7*t^7.42 + 7*t^7.47 + 3*t^7.59 + 3*t^7.64 + 9*t^7.65 + 5*t^7.69 + 4*t^7.74 + 5*t^7.86 + t^7.87 + 6*t^7.91 + t^7.92 + t^7.95 + t^7.96 + t^8.01 + 9*t^8.09 + t^8.18 + 2*t^8.31 + 16*t^8.36 + 4*t^8.4 + 2*t^8.44 + 5*t^8.53 + 7*t^8.58 + 9*t^8.62 + t^8.67 + t^8.71 + 13*t^8.79 + t^8.8 + 4*t^8.84 + 12*t^8.85 + t^8.88 + 10*t^8.89 + 4*t^8.94 + t^8.98 - t^4.2/y - t^5.4/y - (2*t^6.33)/y - (2*t^6.6)/y - t^6.82/y - t^6.87/y + t^7.26/y + (2*t^7.53)/y + (2*t^7.76)/y + (2*t^7.8)/y + (2*t^8.07)/y + t^8.29/y - t^8.46/y + (2*t^8.51)/y - (3*t^8.73)/y + t^8.78/y + (5*t^8.96)/y - t^4.2*y - t^5.4*y - 2*t^6.33*y - 2*t^6.6*y - t^6.82*y - t^6.87*y + t^7.26*y + 2*t^7.53*y + 2*t^7.76*y + 2*t^7.8*y + 2*t^8.07*y + t^8.29*y - t^8.46*y + 2*t^8.51*y - 3*t^8.73*y + t^8.78*y + 5*t^8.96*y | (2*t^2.13)/(g1^2*g2) + 2*t^2.4 + g1*g2^2*t^2.62 + g1^2*g2*t^2.67 + t^3.33/(g1^2*g2) + t^3.38/(g1*g2^2) + 3*g1*g2^2*t^3.82 + g1^2*g2*t^3.87 + (3*t^4.26)/(g1^4*g2^2) + (5*t^4.53)/(g1^2*g2) + t^4.58/(g1*g2^2) + (2*g2*t^4.76)/g1 + 5*t^4.8 + 4*g1*g2^2*t^5.02 + 4*g1^2*g2*t^5.07 + g1^2*g2^4*t^5.25 + g1^3*g2^3*t^5.29 + g1^4*g2^2*t^5.34 + (2*t^5.46)/(g1^4*g2^2) + (2*t^5.51)/(g1^3*g2^3) + (2*t^5.73)/(g1^2*g2) + (2*t^5.78)/(g1*g2^2) + (6*g2*t^5.96)/g1 + g2^3*t^6.18 + 7*g1*g2^2*t^6.22 + 3*g1^2*g2*t^6.27 + g1^3*t^6.31 + (4*t^6.39)/(g1^6*g2^3) + 3*g1^2*g2^4*t^6.45 + 2*g1^3*g2^3*t^6.49 + g1^4*g2^2*t^6.54 + (9*t^6.66)/(g1^4*g2^2) + (3*t^6.71)/(g1^3*g2^3) + t^6.75/(g1^2*g2^4) + (3*t^6.89)/g1^3 + (10*t^6.93)/(g1^2*g2) + t^6.98/(g1*g2^2) + (10*g2*t^7.16)/g1 + 12*t^7.2 + 2*g2^3*t^7.38 + t^7.41/(g1^6*g2^6) + 7*g1*g2^2*t^7.42 + 7*g1^2*g2*t^7.47 + (3*t^7.59)/(g1^6*g2^3) + (3*t^7.64)/(g1^5*g2^4) + 9*g1^2*g2^4*t^7.65 + 5*g1^3*g2^3*t^7.69 + 4*g1^4*g2^2*t^7.74 + (5*t^7.86)/(g1^4*g2^2) + g1^3*g2^6*t^7.87 + (6*t^7.91)/(g1^3*g2^3) + g1^4*g2^5*t^7.92 + t^7.95/(g1^2*g2^4) + g1^5*g2^4*t^7.96 + g1^6*g2^3*t^8.01 + (9*t^8.09)/g1^3 + t^8.18/(g1*g2^2) + (2*g2^2*t^8.31)/g1^2 + (16*g2*t^8.36)/g1 + 4*t^8.4 + (2*g1*t^8.44)/g2 + (5*t^8.53)/(g1^8*g2^4) + 7*g2^3*t^8.58 + 9*g1*g2^2*t^8.62 + g1^2*g2*t^8.67 + g1^3*t^8.71 + (13*t^8.79)/(g1^6*g2^3) + g1*g2^5*t^8.8 + (4*t^8.84)/(g1^5*g2^4) + 12*g1^2*g2^4*t^8.85 + t^8.88/(g1^4*g2^5) + 10*g1^3*g2^3*t^8.89 + 4*g1^4*g2^2*t^8.94 + g1^5*g2*t^8.98 - t^4.2/y - t^5.4/y - (2*t^6.33)/(g1^2*g2*y) - (2*t^6.6)/y - (g1*g2^2*t^6.82)/y - (g1^2*g2*t^6.87)/y + t^7.26/(g1^4*g2^2*y) + (2*t^7.53)/(g1^2*g2*y) + (2*g2*t^7.76)/(g1*y) + (2*t^7.8)/y + (2*g1^2*g2*t^8.07)/y + (g1^3*g2^3*t^8.29)/y - t^8.46/(g1^4*g2^2*y) + (2*t^8.51)/(g1^3*g2^3*y) - (3*t^8.73)/(g1^2*g2*y) + t^8.78/(g1*g2^2*y) + (5*g2*t^8.96)/(g1*y) - t^4.2*y - t^5.4*y - (2*t^6.33*y)/(g1^2*g2) - 2*t^6.6*y - g1*g2^2*t^6.82*y - g1^2*g2*t^6.87*y + (t^7.26*y)/(g1^4*g2^2) + (2*t^7.53*y)/(g1^2*g2) + (2*g2*t^7.76*y)/g1 + 2*t^7.8*y + 2*g1^2*g2*t^8.07*y + g1^3*g2^3*t^8.29*y - (t^8.46*y)/(g1^4*g2^2) + (2*t^8.51*y)/(g1^3*g2^3) - (3*t^8.73*y)/(g1^2*g2) + (t^8.78*y)/(g1*g2^2) + (5*g2*t^8.96*y)/g1 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
58383 | SU3adj1nf2 | ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ | 1.3617 | 1.6423 | 0.8291 | [X:[], M:[0.7103, 0.8], q:[0.591, 0.4181], qb:[0.2987, 0.2923], phi:[0.4]] | 2*t^2.13 + t^2.15 + 2*t^2.4 + t^2.65 + t^2.67 + t^3.33 + t^3.35 + 2*t^3.85 + t^3.87 + 3*t^4.26 + 2*t^4.28 + t^4.3 + 5*t^4.53 + 3*t^4.55 + 2*t^4.78 + 6*t^4.8 + t^4.82 + 4*t^5.05 + 4*t^5.07 + t^5.3 + t^5.32 + t^5.34 + 2*t^5.46 + 3*t^5.48 + t^5.5 + 2*t^5.73 + 2*t^5.75 + 4*t^5.98 + 2*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y | detail |