Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
61150 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ 1.4192 1.6609 0.8544 [X:[1.273], M:[0.908, 0.9095, 0.676], q:[0.4687, 0.3371], qb:[0.6233, 0.3899], phi:[0.3635]] [X:[[0, 4]], M:[[0, -16], [0, 6], [3, 5]], q:[[1, 15], [-2, -4]], qb:[[-1, 1], [2, 0]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }M_{3}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}^{3}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{3}X_{1}$ ${}M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }q_{2}\tilde{q}_{2}X_{1}$ 1 t^2.03 + t^2.18 + t^2.58 + t^2.72 + t^2.73 + t^2.88 + t^3.27 + t^3.67 + t^3.82 + t^4.06 + t^4.21 + 2*t^4.36 + t^4.37 + t^4.52 + t^4.6 + t^4.75 + 3*t^4.76 + 4*t^4.91 + 2*t^5.06 + t^5.15 + 3*t^5.3 + 3*t^5.45 + 3*t^5.46 + 2*t^5.61 + t^5.69 + t^5.76 + 3*t^5.85 + t^6. + t^6.08 + t^6.15 + 2*t^6.24 + t^6.31 + 5*t^6.39 + 4*t^6.54 + 3*t^6.55 + t^6.63 + t^6.7 + 5*t^6.78 + t^6.93 + 8*t^6.94 + 9*t^7.09 + t^7.18 + 3*t^7.24 + t^7.25 + 6*t^7.33 + t^7.4 + 5*t^7.48 + 6*t^7.49 + 3*t^7.63 + 8*t^7.64 + t^7.72 + t^7.73 + 3*t^7.79 + t^7.8 + 5*t^7.88 + t^7.94 + t^8.02 + 7*t^8.03 + t^8.11 + t^8.17 + 3*t^8.18 + 6*t^8.19 + 2*t^8.27 + 3*t^8.33 + 2*t^8.34 + 7*t^8.42 + 3*t^8.49 + 6*t^8.57 + 3*t^8.58 + t^8.64 + t^8.66 + 2*t^8.72 + 5*t^8.73 + 5*t^8.81 + t^8.82 + t^8.88 + t^8.89 + 2*t^8.96 + 10*t^8.97 - t^4.09/y - t^5.18/y - t^6.12/y - t^6.27/y - t^6.67/y - t^6.81/y - t^6.82/y - t^6.97/y - t^7.36/y + t^7.6/y + t^7.75/y + t^7.76/y + t^7.91/y + t^8.06/y - t^8.15/y + (2*t^8.3)/y + t^8.46/y + (2*t^8.61)/y - t^8.84/y - t^4.09*y - t^5.18*y - t^6.12*y - t^6.27*y - t^6.67*y - t^6.81*y - t^6.82*y - t^6.97*y - t^7.36*y + t^7.6*y + t^7.75*y + t^7.76*y + t^7.91*y + t^8.06*y - t^8.15*y + 2*t^8.3*y + t^8.46*y + 2*t^8.61*y - t^8.84*y g1^3*g2^5*t^2.03 + t^2.18/g2^4 + g1^3*g2^15*t^2.58 + t^2.72/g2^16 + g2^6*t^2.73 + t^2.88/(g1^3*g2^3) + t^3.27/g2^6 + g1^3*g2^13*t^3.67 + g2^4*t^3.82 + g1^6*g2^10*t^4.06 + g1^3*g2*t^4.21 + (2*t^4.36)/g2^8 + g2^14*t^4.37 + (g2^5*t^4.52)/g1^3 + g1^6*g2^20*t^4.6 + (g1^3*t^4.75)/g2^11 + 3*g1^3*g2^11*t^4.76 + t^4.91/g2^20 + 2*g2^2*t^4.91 + g2^24*t^4.91 + (2*t^5.06)/(g1^3*g2^7) + g1^6*g2^30*t^5.15 + (2*g1^3*t^5.3)/g2 + g1^3*g2^21*t^5.3 + t^5.45/g2^32 + (2*t^5.45)/g2^10 + 3*g2^12*t^5.46 + (2*g2^3*t^5.61)/g1^3 + g1^6*g2^18*t^5.69 + t^5.76/(g1^6*g2^6) + 3*g1^3*g2^9*t^5.85 - t^6. + t^6./g2^22 + g2^22*t^6. + g1^9*g2^15*t^6.08 + t^6.15/(g1^3*g2^9) + g1^6*g2^6*t^6.24 + g1^6*g2^28*t^6.24 + t^6.31/(g1^6*g2^18) + (3*g1^3*t^6.39)/g2^3 + 2*g1^3*g2^19*t^6.39 + (4*t^6.54)/g2^12 + 3*g2^10*t^6.55 + g1^9*g2^25*t^6.63 - t^6.7/(g1^3*g2^21) + (2*g2*t^6.7)/g1^3 + (2*g1^6*t^6.78)/g2^6 + 3*g1^6*g2^16*t^6.78 + (g1^3*t^6.93)/g2^15 + 6*g1^3*g2^7*t^6.94 + 2*g1^3*g2^29*t^6.94 + (2*t^7.09)/g2^24 + (3*t^7.09)/g2^2 + 4*g2^20*t^7.09 + g1^9*g2^35*t^7.18 + (3*t^7.24)/(g1^3*g2^11) + (g2^11*t^7.25)/g1^3 + 2*g1^6*g2^4*t^7.33 + 4*g1^6*g2^26*t^7.33 + (g2^2*t^7.4)/g1^6 + (g1^3*t^7.48)/g2^27 + (4*g1^3*t^7.48)/g2^5 + 4*g1^3*g2^17*t^7.49 + 2*g1^3*g2^39*t^7.49 + t^7.63/g2^36 + (2*t^7.63)/g2^14 + 7*g2^8*t^7.64 + g2^30*t^7.64 + g1^9*g2^23*t^7.72 + g1^9*g2^45*t^7.73 + (3*t^7.79)/(g1^3*g2) + (g2^21*t^7.8)/g1^3 + 4*g1^6*g2^14*t^7.88 + g1^6*g2^36*t^7.88 + t^7.94/(g1^6*g2^10) + (g1^3*t^8.02)/g2^17 + 3*g1^3*g2^5*t^8.03 + 4*g1^3*g2^27*t^8.03 + g1^12*g2^20*t^8.11 + t^8.17/g2^48 + (2*t^8.18)/g2^26 + t^8.18/g2^4 + 6*g2^18*t^8.19 + g1^9*g2^11*t^8.27 + g1^9*g2^33*t^8.27 + (3*t^8.33)/(g1^3*g2^13) + (2*g2^9*t^8.34)/g1^3 + 2*g1^6*g2^2*t^8.42 + 5*g1^6*g2^24*t^8.42 + (2*t^8.49)/g1^6 + t^8.49/(g1^6*g2^22) + (6*g1^3*t^8.57)/g2^7 + g1^3*g2^15*t^8.58 + 2*g1^3*g2^37*t^8.58 + t^8.64/(g1^9*g2^9) + g1^12*g2^30*t^8.66 + t^8.72/g2^38 + t^8.72/g2^16 + 4*g2^6*t^8.73 + g2^28*t^8.73 + (2*g1^9*t^8.81)/g2 + 3*g1^9*g2^21*t^8.81 + g1^9*g2^43*t^8.82 - t^8.88/(g1^3*g2^25) + (2*t^8.88)/(g1^3*g2^3) + (g2^19*t^8.89)/g1^3 + (2*g1^6*t^8.96)/g2^10 + 7*g1^6*g2^12*t^8.97 + 3*g1^6*g2^34*t^8.97 - t^4.09/(g2^2*y) - t^5.18/(g2^4*y) - (g1^3*g2^3*t^6.12)/y - t^6.27/(g2^6*y) - (g1^3*g2^13*t^6.67)/y - t^6.81/(g2^18*y) - (g2^4*t^6.82)/y - t^6.97/(g1^3*g2^5*y) - t^7.36/(g2^8*y) + (g1^6*g2^20*t^7.6)/y + (g1^3*t^7.75)/(g2^11*y) + (g1^3*g2^11*t^7.76)/y + (g2^2*t^7.91)/y + t^8.06/(g1^3*g2^7*y) - (g1^6*g2^8*t^8.15)/y + (g1^3*t^8.3)/(g2*y) + (g1^3*g2^21*t^8.3)/y + (g2^12*t^8.46)/y + t^8.61/(g1^3*g2^19*y) + (g2^3*t^8.61)/(g1^3*y) - (g1^3*t^8.84)/(g2^13*y) - (t^4.09*y)/g2^2 - (t^5.18*y)/g2^4 - g1^3*g2^3*t^6.12*y - (t^6.27*y)/g2^6 - g1^3*g2^13*t^6.67*y - (t^6.81*y)/g2^18 - g2^4*t^6.82*y - (t^6.97*y)/(g1^3*g2^5) - (t^7.36*y)/g2^8 + g1^6*g2^20*t^7.6*y + (g1^3*t^7.75*y)/g2^11 + g1^3*g2^11*t^7.76*y + g2^2*t^7.91*y + (t^8.06*y)/(g1^3*g2^7) - g1^6*g2^8*t^8.15*y + (g1^3*t^8.3*y)/g2 + g1^3*g2^21*t^8.3*y + g2^12*t^8.46*y + (t^8.61*y)/(g1^3*g2^19) + (g2^3*t^8.61*y)/g1^3 - (g1^3*t^8.84*y)/g2^13


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
58436 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ 1.3984 1.6199 0.8632 [X:[1.2729], M:[0.9082, 0.9094], q:[0.469, 0.3361], qb:[0.6228, 0.3909], phi:[0.3635]] t^2.18 + t^2.58 + t^2.72 + t^2.73 + t^2.88 + t^3.27 + t^3.67 + t^3.82 + t^3.97 + 2*t^4.36 + t^4.37 + t^4.51 + 2*t^4.76 + 3*t^4.91 + 2*t^5.06 + t^5.16 + t^5.3 + t^5.31 + 3*t^5.45 + 3*t^5.46 + 2*t^5.6 + t^5.75 + 2*t^5.85 + t^6. - t^4.09/y - t^5.18/y - t^4.09*y - t^5.18*y detail