Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
61149 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ 1.3023 1.5528 0.8387 [X:[], M:[0.8, 1.1915], q:[0.5333, 0.5333], qb:[0.2751, 0.2582], phi:[0.4]] [X:[], M:[[0], [1]], q:[[0], [0]], qb:[[-1], [1]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}\tilde{q}_{2}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}^{3}$, ${ }M_{1}M_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}\tilde{q}_{2}^{2}$ ${}M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ 2}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ 2}\phi_{1}q_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$ 4 2*t^2.37 + 2*t^2.4 + t^2.43 + 4*t^3.57 + 3*t^3.63 + 3*t^4.75 + 7*t^4.77 + 5*t^4.8 + 5*t^4.83 + t^4.85 + t^5.92 + 7*t^5.95 + 9*t^5.97 + 4*t^6. + 7*t^6.03 + 2*t^6.05 + t^6.08 + 4*t^7.12 + 19*t^7.15 + 12*t^7.17 + 19*t^7.2 + 8*t^7.23 + 8*t^7.25 + t^7.28 + 2*t^8.3 + 11*t^8.32 + 24*t^8.35 + 13*t^8.37 + 23*t^8.4 + 8*t^8.43 + 11*t^8.45 + 3*t^8.48 + t^8.5 - t^4.2/y - t^5.4/y - (2*t^6.57)/y - (2*t^6.6)/y - t^6.63/y + t^7.75/y + t^7.77/y + (2*t^7.8)/y + t^7.83/y + (5*t^8.95)/y + t^8.97/y - t^4.2*y - t^5.4*y - 2*t^6.57*y - 2*t^6.6*y - t^6.63*y + t^7.75*y + t^7.77*y + 2*t^7.8*y + t^7.83*y + 5*t^8.95*y + t^8.97*y 2*g1*t^2.37 + 2*t^2.4 + t^2.43/g1 + 4*g1*t^3.57 + (3*t^3.63)/g1 + 3*g1^2*t^4.75 + 7*g1*t^4.77 + 5*t^4.8 + (5*t^4.83)/g1 + t^4.85/g1^2 + g1^3*t^5.92 + 7*g1^2*t^5.95 + 9*g1*t^5.97 + 4*t^6. + (7*t^6.03)/g1 + (2*t^6.05)/g1^2 + t^6.08/g1^3 + 4*g1^3*t^7.12 + 19*g1^2*t^7.15 + 12*g1*t^7.17 + 19*t^7.2 + (8*t^7.23)/g1 + (8*t^7.25)/g1^2 + t^7.28/g1^3 + 2*g1^4*t^8.3 + 11*g1^3*t^8.32 + 24*g1^2*t^8.35 + 13*g1*t^8.37 + 23*t^8.4 + (8*t^8.43)/g1 + (11*t^8.45)/g1^2 + (3*t^8.48)/g1^3 + t^8.5/g1^4 - t^4.2/y - t^5.4/y - (2*g1*t^6.57)/y - (2*t^6.6)/y - t^6.63/(g1*y) + (g1^2*t^7.75)/y + (g1*t^7.77)/y + (2*t^7.8)/y + t^7.83/(g1*y) + (5*g1^2*t^8.95)/y + (g1*t^8.97)/y - t^4.2*y - t^5.4*y - 2*g1*t^6.57*y - 2*t^6.6*y - (t^6.63*y)/g1 + g1^2*t^7.75*y + g1*t^7.77*y + 2*t^7.8*y + (t^7.83*y)/g1 + 5*g1^2*t^8.95*y + g1*t^8.97*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
58793 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ 1.3214 1.5667 0.8434 [X:[], M:[0.8, 1.2745], q:[0.5858, 0.4283], qb:[0.2971, 0.2887], phi:[0.4]] t^2.15 + 2*t^2.4 + t^2.62 + t^2.65 + t^3.35 + t^3.38 + 3*t^3.82 + 2*t^3.85 + t^4.3 + 3*t^4.55 + t^4.58 + t^4.77 + 4*t^4.8 + 4*t^5.02 + 4*t^5.05 + t^5.25 + t^5.27 + t^5.3 + t^5.5 + t^5.53 + 2*t^5.75 + 2*t^5.78 + 3*t^5.97 - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail