Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
61146 SU3adj1nf2 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{2}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}q_{1}q_{2}^{2}$ + ${ }M_{4}\phi_{1}q_{1}\tilde{q}_{2}$ 1.0272 1.2675 0.8104 [X:[1.5117, 1.5479, 1.4521, 1.4883], M:[0.7144, 0.7377, 0.7506, 0.9521], q:[0.274, 0.2377], qb:[0.2144, 0.274], phi:[0.5]] [X:[[0, 0, -1], [0, -1, 0], [0, 1, 0], [0, 0, 1]], M:[[3, 2, 1], [-3, -1, -1], [3, 1, 2], [0, 1, 0]], q:[[-1, -1, 0], [-1, 0, -1]], qb:[[1, 1, 1], [1, 0, 0]], phi:[[0, 0, 0]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{2}$, ${ }M_{3}$, ${ }M_{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }X_{3}$, ${ }M_{1}M_{3}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }X_{4}$, ${ }M_{3}^{2}$, ${ }\phi_{1}^{3}$, ${ }M_{3}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }X_{2}$, ${ }M_{1}M_{4}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{4}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}M_{4}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }M_{4}^{2}$, ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{1}^{2}$ ${}$ -3 t^2.14 + t^2.21 + t^2.25 + 2*t^2.86 + t^2.96 + t^3. + t^3.04 + t^3.61 + t^4.29 + 3*t^4.36 + t^4.39 + t^4.43 + 3*t^4.46 + 2*t^4.5 + 2*t^4.54 + 2*t^4.64 + 2*t^5. + 2*t^5.07 + 4*t^5.11 + t^5.14 + 2*t^5.18 + t^5.21 + t^5.22 + 3*t^5.25 + 2*t^5.29 + t^5.36 + 3*t^5.71 + t^5.75 + 2*t^5.82 + 2*t^5.86 + t^5.89 + t^5.93 - 3*t^6. + t^6.07 - t^6.11 - t^6.14 - t^6.18 + 2*t^6.43 + 2*t^6.46 + 3*t^6.5 + t^6.54 + 4*t^6.57 + 6*t^6.61 + 2*t^6.64 + t^6.65 + 5*t^6.68 - t^6.71 + 3*t^6.72 + t^6.75 + t^6.76 + 4*t^6.79 + 2*t^6.86 - 2*t^6.89 + 2*t^6.9 + 2*t^6.97 + 2*t^7.14 + 6*t^7.21 + t^7.22 + 4*t^7.25 + 2*t^7.28 + t^7.29 + 10*t^7.32 + 7*t^7.36 + 9*t^7.39 + 6*t^7.43 + 4*t^7.46 + t^7.47 + 10*t^7.5 + 3*t^7.54 + 3*t^7.57 + 2*t^7.61 + t^7.68 + 3*t^7.86 + t^7.89 + 2*t^7.93 + 7*t^7.96 + 2*t^8. + 3*t^8.03 + 5*t^8.07 + t^8.1 + 2*t^8.11 - t^8.14 + t^8.18 - 3*t^8.21 - 6*t^8.25 - 2*t^8.29 - 3*t^8.32 - 3*t^8.36 - 4*t^8.39 - t^8.4 - 3*t^8.43 - 2*t^8.47 - 2*t^8.5 + 6*t^8.57 + 2*t^8.61 + 4*t^8.64 + 5*t^8.68 + 7*t^8.71 + 4*t^8.72 + 7*t^8.75 + 4*t^8.78 + 3*t^8.79 + 10*t^8.82 + 2*t^8.85 - 5*t^8.86 + 7*t^8.89 + t^8.9 + 10*t^8.93 - 7*t^8.96 + 3*t^8.97 - t^4.5/y - t^6./y - t^6.64/y - t^6.71/y - t^6.75/y + t^7.39/y + t^7.46/y + t^7.5/y + t^7.64/y + (2*t^8.)/y + (2*t^8.07)/y + (3*t^8.11)/y + (2*t^8.18)/y + t^8.22/y + (2*t^8.25)/y + (2*t^8.29)/y + t^8.36/y + t^8.71/y + t^8.75/y - t^8.79/y + (3*t^8.82)/y - t^8.86/y + t^8.89/y - t^8.93/y - (2*t^8.96)/y - t^4.5*y - t^6.*y - t^6.64*y - t^6.71*y - t^6.75*y + t^7.39*y + t^7.46*y + t^7.5*y + t^7.64*y + 2*t^8.*y + 2*t^8.07*y + 3*t^8.11*y + 2*t^8.18*y + t^8.22*y + 2*t^8.25*y + 2*t^8.29*y + t^8.36*y + t^8.71*y + t^8.75*y - t^8.79*y + 3*t^8.82*y - t^8.86*y + t^8.89*y - t^8.93*y - 2*t^8.96*y g1^3*g2^2*g3*t^2.14 + t^2.21/(g1^3*g2*g3) + g1^3*g2*g3^2*t^2.25 + 2*g2*t^2.86 + g3*t^2.96 + t^3. + t^3.04/g3 + g1^3*g2^2*g3^2*t^3.61 + g1^6*g2^4*g3^2*t^4.29 + 3*g2*t^4.36 + g1^6*g2^3*g3^3*t^4.39 + t^4.43/(g1^6*g2^2*g3^2) + 3*g3*t^4.46 + t^4.5 + g1^6*g2^2*g3^4*t^4.5 + (2*t^4.54)/g3 + (2*t^4.64)/g2 + 2*g1^3*g2^3*g3*t^5. + (2*t^5.07)/(g1^3*g3) + 4*g1^3*g2^2*g3^2*t^5.11 + g1^3*g2^2*g3*t^5.14 + t^5.18/(g1^3*g2) + g1^3*g2^2*t^5.18 + t^5.21/(g1^3*g2*g3) + g1^3*g2*g3^3*t^5.22 + (2*t^5.25)/(g1^3*g2*g3^2) + g1^3*g2*g3^2*t^5.25 + 2*g1^3*g2*g3*t^5.29 + t^5.36/(g1^3*g2^2*g3) + 3*g2^2*t^5.71 + g1^6*g2^4*g3^3*t^5.75 + 2*g2*g3*t^5.82 + g2*t^5.86 + g1^6*g2^3*g3^4*t^5.86 + (g2*t^5.89)/g3 + g3^2*t^5.93 - 3*t^6. + t^6.07/g3^2 - (g3*t^6.11)/g2 - t^6.14/g2 - t^6.18/(g2*g3) + g1^3*g2^3*g3^3*t^6.43 + g1^9*g2^6*g3^3*t^6.43 + 2*g1^3*g2^3*g3^2*t^6.46 + 3*g1^3*g2^3*g3*t^6.5 + g1^9*g2^5*g3^4*t^6.54 + (3*t^6.57)/(g1^3*g3) + g1^3*g2^2*g3^3*t^6.57 + 6*g1^3*g2^2*g3^2*t^6.61 + t^6.64/(g1^3*g3^3) + t^6.64/(g1^9*g2^3*g3^3) + g1^9*g2^4*g3^5*t^6.65 + (3*t^6.68)/(g1^3*g2) + 2*g1^3*g2^2*t^6.68 - t^6.71/(g1^3*g2*g3) + 3*g1^3*g2*g3^3*t^6.72 + (2*t^6.75)/(g1^3*g2*g3^2) - g1^3*g2*g3^2*t^6.75 + g1^9*g2^3*g3^6*t^6.76 + 4*g1^3*g2*g3*t^6.79 + (2*t^6.86)/(g1^3*g2^2*g3) - (2*t^6.89)/(g1^3*g2^2*g3^2) + 2*g1^3*g3^2*t^6.9 + g1^3*t^6.97 + t^6.97/(g1^3*g2^3) + 2*g1^6*g2^5*g3^2*t^7.14 + 6*g2^2*t^7.21 + g1^6*g2^4*g3^4*t^7.22 + 4*g1^6*g2^4*g3^3*t^7.25 + (2*t^7.28)/(g1^6*g2*g3^2) + g1^6*g2^4*g3^2*t^7.29 + 9*g2*g3*t^7.32 + g1^6*g2^4*g3*t^7.32 + 3*g2*t^7.36 + 4*g1^6*g2^3*g3^4*t^7.36 + t^7.39/(g1^6*g2^2*g3) + (7*g2*t^7.39)/g3 + g1^6*g2^3*g3^3*t^7.39 + t^7.43/(g1^6*g2^2*g3^2) + 3*g3^2*t^7.43 + 2*g1^6*g2^3*g3^2*t^7.43 + (2*t^7.46)/(g1^6*g2^2*g3^3) + 2*g3*t^7.46 + g1^6*g2^2*g3^5*t^7.47 + 9*t^7.5 + g1^6*g2^2*g3^4*t^7.5 + t^7.54/g3 + 2*g1^6*g2^2*g3^3*t^7.54 + (2*t^7.57)/g3^2 + t^7.57/(g1^6*g2^3*g3^2) + (2*g3*t^7.61)/g2 + t^7.68/(g2*g3) + 3*g1^3*g2^4*g3*t^7.86 + g1^9*g2^6*g3^4*t^7.89 + (3*g2*t^7.93)/(g1^3*g3) - g1^3*g2^3*g3^3*t^7.93 + 7*g1^3*g2^3*g3^2*t^7.96 + g1^3*g2^3*g3*t^8. + g1^9*g2^5*g3^5*t^8. + (2*t^8.03)/g1^3 + g1^3*g2^3*t^8.03 + t^8.07/(g1^3*g3) + 4*g1^3*g2^2*g3^3*t^8.07 + t^8.1/(g1^3*g3^2) + g1^3*g2^2*g3^2*t^8.11 + g1^9*g2^4*g3^6*t^8.11 - t^8.14/(g1^3*g3^3) + (g3*t^8.14)/(g1^3*g2) - g1^3*g2^2*g3*t^8.14 + g1^3*g2*g3^4*t^8.18 - (4*t^8.21)/(g1^3*g2*g3) + (g1^3*g2^2*t^8.21)/g3 - t^8.25/(g1^3*g2*g3^2) - 5*g1^3*g2*g3^2*t^8.25 - 2*g1^3*g2*g3*t^8.29 - (2*t^8.32)/(g1^3*g2^2) - g1^3*g2*t^8.32 - (2*t^8.36)/(g1^3*g2^2*g3) - g1^3*g3^3*t^8.36 - (4*t^8.39)/(g1^3*g2^2*g3^2) - g1^3*g3^2*t^8.4 - 3*g1^3*g3*t^8.43 - g1^3*t^8.47 - t^8.47/(g1^3*g2^3) - (2*t^8.5)/(g1^3*g2^3*g3) + 4*g2^3*t^8.57 + g1^6*g2^5*g3^4*t^8.57 + g1^12*g2^8*g3^4*t^8.57 + 2*g1^6*g2^5*g3^3*t^8.61 + g2^2*g3^2*t^8.64 + 3*g1^6*g2^5*g3^2*t^8.64 + 3*g2^2*g3*t^8.68 + g1^6*g2^4*g3^5*t^8.68 + g1^12*g2^7*g3^5*t^8.68 + 7*g2^2*t^8.71 + 4*g1^6*g2^4*g3^4*t^8.72 + (g2^2*t^8.75)/g3 + 6*g1^6*g2^4*g3^3*t^8.75 + (3*t^8.78)/(g1^6*g2*g3^2) + (g2^2*t^8.78)/g3^2 + 2*g2*g3^2*t^8.79 + g1^12*g2^6*g3^6*t^8.79 + 7*g2*g3*t^8.82 + 2*g1^6*g2^4*g3*t^8.82 + g1^6*g2^3*g3^5*t^8.82 + t^8.85/(g1^12*g2^4*g3^4) + t^8.85/(g1^6*g2*g3^4) - 11*g2*t^8.86 + 6*g1^6*g2^3*g3^4*t^8.86 + (3*t^8.89)/(g1^6*g2^2*g3) + (4*g2*t^8.89)/g3 + g3^3*t^8.89 - g1^6*g2^3*g3^3*t^8.89 + g1^12*g2^5*g3^7*t^8.9 - t^8.93/(g1^6*g2^2*g3^2) + (g2*t^8.93)/g3^2 + 6*g3^2*t^8.93 + 4*g1^6*g2^3*g3^2*t^8.93 + (2*t^8.96)/(g1^6*g2^2*g3^3) - 9*g3*t^8.96 + 3*g1^6*g2^2*g3^5*t^8.97 - t^4.5/y - t^6./y - (g1^3*g2^2*g3*t^6.64)/y - t^6.71/(g1^3*g2*g3*y) - (g1^3*g2*g3^2*t^6.75)/y + (g1^6*g2^3*g3^3*t^7.39)/y + (g3*t^7.46)/y + t^7.5/y + t^7.64/(g2*y) + (2*g1^3*g2^3*g3*t^8.)/y + (2*t^8.07)/(g1^3*g3*y) + (3*g1^3*g2^2*g3^2*t^8.11)/y + t^8.18/(g1^3*g2*y) + (g1^3*g2^2*t^8.18)/y + (g1^3*g2*g3^3*t^8.22)/y + (2*t^8.25)/(g1^3*g2*g3^2*y) + (2*g1^3*g2*g3*t^8.29)/y + t^8.36/(g1^3*g2^2*g3*y) + (g2^2*t^8.71)/y + (g1^6*g2^4*g3^3*t^8.75)/y - (g1^6*g2^4*g3^2*t^8.79)/y + (3*g2*g3*t^8.82)/y - (2*g2*t^8.86)/y + (g1^6*g2^3*g3^4*t^8.86)/y + (2*g2*t^8.89)/(g3*y) - (g1^6*g2^3*g3^3*t^8.89)/y - t^8.93/(g1^6*g2^2*g3^2*y) - (2*g3*t^8.96)/y - t^4.5*y - t^6.*y - g1^3*g2^2*g3*t^6.64*y - (t^6.71*y)/(g1^3*g2*g3) - g1^3*g2*g3^2*t^6.75*y + g1^6*g2^3*g3^3*t^7.39*y + g3*t^7.46*y + t^7.5*y + (t^7.64*y)/g2 + 2*g1^3*g2^3*g3*t^8.*y + (2*t^8.07*y)/(g1^3*g3) + 3*g1^3*g2^2*g3^2*t^8.11*y + (t^8.18*y)/(g1^3*g2) + g1^3*g2^2*t^8.18*y + g1^3*g2*g3^3*t^8.22*y + (2*t^8.25*y)/(g1^3*g2*g3^2) + 2*g1^3*g2*g3*t^8.29*y + (t^8.36*y)/(g1^3*g2^2*g3) + g2^2*t^8.71*y + g1^6*g2^4*g3^3*t^8.75*y - g1^6*g2^4*g3^2*t^8.79*y + 3*g2*g3*t^8.82*y - 2*g2*t^8.86*y + g1^6*g2^3*g3^4*t^8.86*y + (2*g2*t^8.89*y)/g3 - g1^6*g2^3*g3^3*t^8.89*y - (t^8.93*y)/(g1^6*g2^2*g3^2) - 2*g3*t^8.96*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
58942 SU3adj1nf2 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{2}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}q_{1}q_{2}^{2}$ 1.0244 1.2604 0.8128 [X:[1.5101, 1.5101, 1.4899, 1.4899], M:[0.7349, 0.755, 0.7349], q:[0.255, 0.255], qb:[0.2349, 0.255], phi:[0.5]] 2*t^2.2 + t^2.27 + 2*t^2.97 + t^3. + 2*t^3.03 + t^3.67 + 3*t^4.41 + 6*t^4.47 + t^4.5 + 5*t^4.53 + 5*t^5.17 + 2*t^5.2 + 7*t^5.23 + t^5.27 + 4*t^5.3 + 2*t^5.88 + 3*t^5.94 - 2*t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail