Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
61143 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ + ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$ 1.3524 1.6229 0.8333 [X:[], M:[0.8715, 0.8], q:[0.438, 0.581], qb:[0.2905, 0.2905], phi:[0.4]] [X:[], M:[[3], [0]], q:[[-4], [2]], qb:[[1], [1]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ ${}\phi_{1}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}^{3}\tilde{q}_{2}$, ${ 2}\phi_{1}q_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}\tilde{q}_{2}^{3}$ 5 2*t^2.19 + 2*t^2.4 + 3*t^2.61 + t^3.39 + 4*t^3.81 + 3*t^4.37 + 6*t^4.59 + 9*t^4.8 + 10*t^5.01 + 6*t^5.23 + 2*t^5.57 + 2*t^5.79 + 5*t^6. + 12*t^6.21 + 10*t^6.43 + 4*t^6.56 + 11*t^6.77 + 17*t^6.99 + 24*t^7.2 + 25*t^7.41 + t^7.54 + 28*t^7.63 + 3*t^7.76 + 10*t^7.84 + 6*t^7.97 + 5*t^8.19 + 18*t^8.4 + 20*t^8.61 + 5*t^8.74 + 40*t^8.83 + 14*t^8.96 - t^4.2/y - t^5.4/y - (2*t^6.39)/y - (2*t^6.6)/y - (3*t^6.81)/y + t^7.37/y + (3*t^7.59)/y + (6*t^7.8)/y + (3*t^8.01)/y + (3*t^8.23)/y - t^8.57/y - (3*t^8.79)/y - t^4.2*y - t^5.4*y - 2*t^6.39*y - 2*t^6.6*y - 3*t^6.81*y + t^7.37*y + 3*t^7.59*y + 6*t^7.8*y + 3*t^8.01*y + 3*t^8.23*y - t^8.57*y - 3*t^8.79*y (2*t^2.19)/g1^3 + 2*t^2.4 + 3*g1^3*t^2.61 + t^3.39/g1^3 + 4*g1^3*t^3.81 + (3*t^4.37)/g1^6 + (6*t^4.59)/g1^3 + 9*t^4.8 + 10*g1^3*t^5.01 + 6*g1^6*t^5.23 + (2*t^5.57)/g1^6 + (2*t^5.79)/g1^3 + 5*t^6. + 12*g1^3*t^6.21 + 10*g1^6*t^6.43 + (4*t^6.56)/g1^9 + (11*t^6.77)/g1^6 + (17*t^6.99)/g1^3 + 24*t^7.2 + 25*g1^3*t^7.41 + t^7.54/g1^12 + 28*g1^6*t^7.63 + (3*t^7.76)/g1^9 + 10*g1^9*t^7.84 + (6*t^7.97)/g1^6 + (5*t^8.19)/g1^3 + 18*t^8.4 + 20*g1^3*t^8.61 + (5*t^8.74)/g1^12 + 40*g1^6*t^8.83 + (14*t^8.96)/g1^9 - t^4.2/y - t^5.4/y - (2*t^6.39)/(g1^3*y) - (2*t^6.6)/y - (3*g1^3*t^6.81)/y + t^7.37/(g1^6*y) + (3*t^7.59)/(g1^3*y) + (6*t^7.8)/y + (3*g1^3*t^8.01)/y + (3*g1^6*t^8.23)/y - t^8.57/(g1^6*y) - (3*t^8.79)/(g1^3*y) - t^4.2*y - t^5.4*y - (2*t^6.39*y)/g1^3 - 2*t^6.6*y - 3*g1^3*t^6.81*y + (t^7.37*y)/g1^6 + (3*t^7.59*y)/g1^3 + 6*t^7.8*y + 3*g1^3*t^8.01*y + 3*g1^6*t^8.23*y - (t^8.57*y)/g1^6 - (3*t^8.79*y)/g1^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
58382 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ 1.3528 1.624 0.833 [X:[], M:[0.8611, 0.8], q:[0.4375, 0.5812], qb:[0.3014, 0.2798], phi:[0.4]] t^2.15 + t^2.22 + 2*t^2.4 + 2*t^2.58 + t^2.65 + t^3.35 + 2*t^3.78 + 2*t^3.85 + t^4.3 + t^4.37 + t^4.43 + 3*t^4.55 + 3*t^4.62 + 2*t^4.74 + 6*t^4.8 + t^4.86 + 6*t^4.98 + 4*t^5.05 + 3*t^5.17 + 2*t^5.23 + t^5.3 + t^5.5 + t^5.57 + 2*t^5.75 + 3*t^5.94 + t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail