Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
61137 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }q_{1}\tilde{q}_{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ 1.194 1.4239 0.8385 [X:[1.5944], M:[1.1888, 0.7553, 0.8391], q:[0.2221, 0.5438], qb:[0.617, 0.1835], phi:[0.4056]] [X:[[0, 1]], M:[[0, 2], [0, 8], [0, -7]], q:[[-1, -1], [-1, 13]], qb:[[1, -6], [1, 0]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}^{4}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{1}^{3}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ ${}$ -4 t^2.18 + t^2.27 + t^2.43 + 2*t^2.52 + t^3.4 + t^3.57 + 2*t^3.65 + t^4.17 + t^4.18 + t^4.36 + t^4.45 + t^4.53 + 2*t^4.62 + 3*t^4.7 + 3*t^4.78 + t^4.87 + 3*t^4.95 + 2*t^5.03 + t^5.15 + t^5.3 + t^5.39 + t^5.4 + t^5.47 + t^5.58 + t^5.65 + t^5.66 + t^5.75 + 4*t^5.83 + 4*t^5.92 - 4*t^6. + 4*t^6.08 + 4*t^6.17 - t^6.25 + t^6.35 + 2*t^6.36 + t^6.44 + t^6.55 + 2*t^6.6 + 2*t^6.61 + t^6.63 + 2*t^6.69 + t^6.7 + t^6.71 - t^6.77 + 4*t^6.8 + 4*t^6.88 + 3*t^6.97 + 7*t^7.05 + 5*t^7.13 + 4*t^7.22 + 6*t^7.3 + t^7.33 + 3*t^7.38 + t^7.41 + 3*t^7.47 + t^7.48 + 2*t^7.55 + 3*t^7.57 + 3*t^7.58 + t^7.66 + t^7.74 - t^7.75 + t^7.76 + 4*t^7.82 + 3*t^7.83 + t^7.85 + 2*t^7.9 + 2*t^7.91 + 2*t^7.93 - 2*t^8. + 5*t^8.01 + t^8.08 + 6*t^8.1 + 2*t^8.17 + 2*t^8.27 + t^8.34 + 11*t^8.35 + t^8.36 - 7*t^8.52 + t^8.53 + 4*t^8.54 + 8*t^8.6 + t^8.62 + 3*t^8.68 + 2*t^8.7 + t^8.73 - 2*t^8.77 + 3*t^8.78 + 5*t^8.8 + t^8.81 + 3*t^8.87 + 2*t^8.88 + t^8.9 + t^8.95 - 2*t^8.96 + 4*t^8.98 - t^4.22/y - t^5.43/y - t^6.4/y - t^6.48/y - (2*t^6.73)/y + t^7.45/y + (2*t^7.7)/y + (2*t^7.78)/y - (2*t^7.87)/y + t^7.95/y + t^8.03/y + (3*t^8.83)/y + (4*t^8.92)/y - t^4.22*y - t^5.43*y - t^6.4*y - t^6.48*y - 2*t^6.73*y + t^7.45*y + 2*t^7.7*y + 2*t^7.78*y - 2*t^7.87*y + t^7.95*y + t^8.03*y + 3*t^8.83*y + 4*t^8.92*y g2^13*t^2.18 + g2^8*t^2.27 + t^2.43/g2^2 + (2*t^2.52)/g2^7 + g2^12*t^3.4 + g2^2*t^3.57 + (2*t^3.65)/g2^3 + (g1^3*t^4.17)/g2^7 + (g2^10*t^4.18)/g1^3 + g2^26*t^4.36 + g2^21*t^4.45 + g2^16*t^4.53 + 2*g2^11*t^4.62 + 3*g2^6*t^4.7 + 3*g2*t^4.78 + t^4.87/g2^4 + (3*t^4.95)/g2^9 + (2*t^5.03)/g2^14 + (g2^24*t^5.15)/g1^3 + (g1^3*t^5.3)/g2^3 + (g1^3*t^5.39)/g2^8 + (g2^9*t^5.4)/g1^3 + (g1^3*t^5.47)/g2^13 + g2^25*t^5.58 + t^5.65/(g1^3*g2^6) + g2^20*t^5.66 + g2^15*t^5.75 + 4*g2^10*t^5.83 + 4*g2^5*t^5.92 - 4*t^6. + (4*t^6.08)/g2^5 + (4*t^6.17)/g2^10 - t^6.25/g2^15 + g1^3*g2^6*t^6.35 + (2*g2^23*t^6.36)/g1^3 + g1^3*g2*t^6.44 + g2^39*t^6.55 + (2*g1^3*t^6.6)/g2^9 + (2*g2^8*t^6.61)/g1^3 + g2^34*t^6.63 + (2*g1^3*t^6.69)/g2^14 + (g2^3*t^6.7)/g1^3 + g2^29*t^6.71 - (g1^3*t^6.77)/g2^19 + 4*g2^24*t^6.8 + 4*g2^19*t^6.88 + 3*g2^14*t^6.97 + 7*g2^9*t^7.05 + 5*g2^4*t^7.13 + (4*t^7.22)/g2 + (6*t^7.3)/g2^6 + (g2^37*t^7.33)/g1^3 + (3*t^7.38)/g2^11 + (g2^32*t^7.41)/g1^3 + (3*t^7.47)/g2^16 + g1^3*g2^10*t^7.48 + (2*t^7.55)/g2^21 + 3*g1^3*g2^5*t^7.57 + (3*g2^22*t^7.58)/g1^3 + (g2^17*t^7.66)/g1^3 + (g1^3*t^7.74)/g2^5 - (g2^12*t^7.75)/g1^3 + g2^38*t^7.76 + (4*g1^3*t^7.82)/g2^10 + (3*g2^7*t^7.83)/g1^3 + g2^33*t^7.85 + (2*g1^3*t^7.9)/g2^15 + (2*g2^2*t^7.91)/g1^3 + 2*g2^28*t^7.93 - (2*t^8.)/(g1^3*g2^3) + 5*g2^23*t^8.01 + t^8.08/(g1^3*g2^8) + 6*g2^18*t^8.1 + (2*t^8.17)/(g1^3*g2^13) + 2*g2^8*t^8.27 + (g1^6*t^8.34)/g2^14 + 11*g2^3*t^8.35 + (g2^20*t^8.36)/g1^6 - (7*t^8.52)/g2^7 + g1^3*g2^19*t^8.53 + (4*g2^36*t^8.54)/g1^3 + (8*t^8.6)/g2^12 + g1^3*g2^14*t^8.62 + (3*t^8.68)/g2^17 + 2*g1^3*g2^9*t^8.7 + g2^52*t^8.73 - (2*t^8.77)/g2^22 + 3*g1^3*g2^4*t^8.78 + (5*g2^21*t^8.8)/g1^3 + g2^47*t^8.81 + (3*g1^3*t^8.87)/g2 + (2*g2^16*t^8.88)/g1^3 + g2^42*t^8.9 + (g1^3*t^8.95)/g2^6 - (2*g2^11*t^8.96)/g1^3 + 4*g2^37*t^8.98 - t^4.22/(g2*y) - t^5.43/(g2^2*y) - (g2^12*t^6.4)/y - (g2^7*t^6.48)/y - (2*t^6.73)/(g2^8*y) + (g2^21*t^7.45)/y + (2*g2^6*t^7.7)/y + (2*g2*t^7.78)/y - (2*t^7.87)/(g2^4*y) + t^7.95/(g2^9*y) + t^8.03/(g2^14*y) + (3*g2^10*t^8.83)/y + (4*g2^5*t^8.92)/y - (t^4.22*y)/g2 - (t^5.43*y)/g2^2 - g2^12*t^6.4*y - g2^7*t^6.48*y - (2*t^6.73*y)/g2^8 + g2^21*t^7.45*y + 2*g2^6*t^7.7*y + 2*g2*t^7.78*y - (2*t^7.87*y)/g2^4 + (t^7.95*y)/g2^9 + (t^8.03*y)/g2^14 + 3*g2^10*t^8.83*y + 4*g2^5*t^8.92*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
60090 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }q_{1}\tilde{q}_{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ 1.1804 1.402 0.842 [X:[1.5931], M:[1.1862, 0.7448], q:[0.2274, 0.5309], qb:[0.6209, 0.1795], phi:[0.4069]] t^2.13 + t^2.23 + t^2.44 + t^2.54 + t^3.35 + t^3.46 + t^3.56 + 2*t^3.66 + t^4.16 + t^4.18 + t^4.26 + t^4.37 + t^4.47 + 2*t^4.57 + 2*t^4.68 + 2*t^4.78 + t^4.88 + 2*t^4.99 + t^5.09 + t^5.28 + t^5.38 + t^5.4 + 2*t^5.48 + 2*t^5.59 + 2*t^5.69 + t^5.71 + 4*t^5.79 + 4*t^5.9 - 3*t^6. - t^4.22/y - t^5.44/y - t^4.22*y - t^5.44*y detail