Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
61124 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$ | 1.4589 | 1.6408 | 0.8891 | [X:[1.393], M:[0.8994, 0.9216, 0.9105], q:[0.5314, 0.5203], qb:[0.5692, 0.5581], phi:[0.3035]] | [X:[[0, 4]], M:[[3, -7], [-3, -5], [0, -6]], q:[[-2, 6], [1, 5]], qb:[[-1, 1], [2, 0]], phi:[[0, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }M_{3}$, ${ }\phi_{1}^{3}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{1}M_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}\phi_{1}^{3}$, ${ }\phi_{1}^{6}$, ${ }M_{2}M_{3}$, ${ }M_{2}\phi_{1}^{3}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$ | ${}M_{3}q_{2}\tilde{q}_{1}$ | -1 | t^2.7 + 2*t^2.73 + t^2.76 + t^3.27 + t^4.15 + 3*t^4.18 + t^4.21 + t^5.06 + 2*t^5.09 + t^5.12 + t^5.4 + 2*t^5.43 + 4*t^5.46 + 2*t^5.5 + t^5.53 + t^5.63 + t^5.66 - t^6. - t^6.03 + 2*t^6.54 + t^6.57 + t^6.84 + 4*t^6.88 + 6*t^6.91 + 3*t^6.94 + t^6.98 + 2*t^7.41 + 3*t^7.45 + t^7.48 + t^7.51 + 2*t^7.75 + 2*t^7.79 + 4*t^7.82 + 3*t^7.85 + t^7.89 + t^8.09 + 2*t^8.13 + 4*t^8.16 + 6*t^8.19 + 4*t^8.23 + 2*t^8.26 + 2*t^8.29 + 3*t^8.32 + 6*t^8.36 + 3*t^8.39 + t^8.42 - t^8.66 - 5*t^8.7 - 5*t^8.73 - 5*t^8.76 - t^8.8 + t^8.9 + t^8.93 + t^8.73/y^2 - t^3.91/y - t^4.82/y - t^6.61/y - (2*t^6.64)/y - t^6.68/y - t^7.18/y - t^7.52/y - (2*t^7.55)/y - t^7.59/y - t^8.09/y + (2*t^8.43)/y + (2*t^8.46)/y + (2*t^8.5)/y - t^3.91*y - t^4.82*y - t^6.61*y - 2*t^6.64*y - t^6.68*y - t^7.18*y - t^7.52*y - 2*t^7.55*y - t^7.59*y - t^8.09*y + 2*t^8.43*y + 2*t^8.46*y + 2*t^8.5*y + t^8.73*y^2 | (g1^3*t^2.7)/g2^7 + (2*t^2.73)/g2^6 + t^2.76/(g1^3*g2^5) + g2^6*t^3.27 + g1^3*g2^3*t^4.15 + 3*g2^4*t^4.18 + (g2^5*t^4.21)/g1^3 + g1^3*g2*t^5.06 + 2*g2^2*t^5.09 + (g2^3*t^5.12)/g1^3 + (g1^6*t^5.4)/g2^14 + (2*g1^3*t^5.43)/g2^13 + (4*t^5.46)/g2^12 + (2*t^5.5)/(g1^3*g2^11) + t^5.53/(g1^6*g2^10) + g2^14*t^5.63 + (g2^15*t^5.66)/g1^3 - t^6. - (g2*t^6.03)/g1^3 + 2*g2^12*t^6.54 + (g2^13*t^6.57)/g1^3 + (g1^6*t^6.84)/g2^4 + (4*g1^3*t^6.88)/g2^3 + (6*t^6.91)/g2^2 + (3*t^6.94)/(g1^3*g2) + t^6.98/g1^6 + 2*g1^3*g2^9*t^7.41 + 3*g2^10*t^7.45 + (g2^11*t^7.48)/g1^3 + (g2^12*t^7.51)/g1^6 + (2*g1^6*t^7.75)/g2^6 + (2*g1^3*t^7.79)/g2^5 + (4*t^7.82)/g2^4 + (3*t^7.85)/(g1^3*g2^3) + t^7.89/(g1^6*g2^2) + (g1^9*t^8.09)/g2^21 + (2*g1^6*t^8.13)/g2^20 + (4*g1^3*t^8.16)/g2^19 + (6*t^8.19)/g2^18 + (4*t^8.23)/(g1^3*g2^17) + (2*t^8.26)/(g1^6*g2^16) + t^8.29/(g1^9*g2^15) + g1^6*g2^6*t^8.29 + 3*g1^3*g2^7*t^8.32 + 6*g2^8*t^8.36 + (3*g2^9*t^8.39)/g1^3 + (g2^10*t^8.42)/g1^6 - (g1^6*t^8.66)/g2^8 - (5*g1^3*t^8.7)/g2^7 - (5*t^8.73)/g2^6 - (5*t^8.76)/(g1^3*g2^5) - t^8.8/(g1^6*g2^4) + g2^20*t^8.9 + (g2^21*t^8.93)/g1^3 + t^8.73/(g2^6*y^2) - t^3.91/(g2^2*y) - t^4.82/(g2^4*y) - (g1^3*t^6.61)/(g2^9*y) - (2*t^6.64)/(g2^8*y) - t^6.68/(g1^3*g2^7*y) - (g2^4*t^7.18)/y - (g1^3*t^7.52)/(g2^11*y) - (2*t^7.55)/(g2^10*y) - t^7.59/(g1^3*g2^9*y) - (g2^2*t^8.09)/y + (2*g1^3*t^8.43)/(g2^13*y) + (2*t^8.46)/(g2^12*y) + (2*t^8.5)/(g1^3*g2^11*y) - (t^3.91*y)/g2^2 - (t^4.82*y)/g2^4 - (g1^3*t^6.61*y)/g2^9 - (2*t^6.64*y)/g2^8 - (t^6.68*y)/(g1^3*g2^7) - g2^4*t^7.18*y - (g1^3*t^7.52*y)/g2^11 - (2*t^7.55*y)/g2^10 - (t^7.59*y)/(g1^3*g2^9) - g2^2*t^8.09*y + (2*g1^3*t^8.43*y)/g2^13 + (2*t^8.46*y)/g2^12 + (2*t^8.5*y)/(g1^3*g2^11) + (t^8.73*y^2)/g2^6 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57981 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ | 1.4595 | 1.6426 | 0.8885 | [X:[1.3944], M:[0.8966, 0.9203, 0.8873], q:[0.5408, 0.5078], qb:[0.5626, 0.5719], phi:[0.3028]] | t^2.66 + t^2.69 + t^2.73 + t^2.76 + t^3.21 + t^4.12 + t^4.15 + t^4.18 + t^4.22 + t^4.25 + t^5.03 + t^5.06 + t^5.13 + t^5.15 + t^5.32 + t^5.35 + t^5.38 + t^5.39 + 2*t^5.42 + 2*t^5.45 + t^5.49 + t^5.52 + t^5.58 + t^5.68 + t^5.87 + t^5.94 - 3*t^6. - t^3.91/y - t^4.82/y - t^3.91*y - t^4.82*y | detail |