Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
61116 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ 1.2614 1.489 0.8472 [X:[1.4369], M:[0.7184, 0.8738, 0.9223], q:[0.7767, 0.2136], qb:[0.5049, 0.3495], phi:[0.3592]] [X:[[0, 4]], M:[[0, 2], [0, 8], [0, -3]], q:[[-1, -8], [-1, -4]], qb:[[1, 6], [1, 0]], phi:[[0, 1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }M_{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}^{3}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ ${}M_{3}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{4}q_{2}\tilde{q}_{2}$, ${ 2}\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ 2 3*t^2.16 + t^2.62 + 2*t^2.77 + t^3.23 + t^3.84 + 7*t^4.31 + t^4.46 + 2*t^4.69 + 3*t^4.78 + 7*t^4.92 + 2*t^5.16 + t^5.24 + 4*t^5.39 + 3*t^5.53 + 2*t^5.77 + t^5.85 + 2*t^6. + 2*t^6.38 + 13*t^6.47 + 3*t^6.61 + 6*t^6.84 + 7*t^6.93 + 15*t^7.08 + 2*t^7.22 + 6*t^7.31 + 3*t^7.4 + 4*t^7.46 + 10*t^7.54 + 9*t^7.69 + 2*t^7.78 + t^7.86 + 6*t^7.92 + 4*t^8.01 + 4*t^8.16 + 4*t^8.3 + 2*t^8.39 + t^8.48 + 6*t^8.53 + 20*t^8.62 + t^8.77 + t^8.91 - t^4.08/y - t^5.16/y - (3*t^6.23)/y - t^6.7/y - t^6.84/y + (2*t^7.78)/y + (5*t^7.92)/y - (2*t^8.39)/y + t^8.53/y - (2*t^8.85)/y - t^4.08*y - t^5.16*y - 3*t^6.23*y - t^6.7*y - t^6.84*y + 2*t^7.78*y + 5*t^7.92*y - 2*t^8.39*y + t^8.53*y - 2*t^8.85*y 3*g2^2*t^2.16 + g2^8*t^2.62 + (2*t^2.77)/g2^3 + g2^3*t^3.23 + t^3.84/g2^2 + 7*g2^4*t^4.31 + t^4.46/g2^7 + t^4.69/(g1^3*g2^15) + g1^3*g2^7*t^4.69 + 3*g2^10*t^4.78 + (7*t^4.92)/g2 + t^5.16/(g1^3*g2^9) + g1^3*g2^13*t^5.16 + g2^16*t^5.24 + 4*g2^5*t^5.39 + (3*t^5.53)/g2^6 + t^5.77/(g1^3*g2^14) + g1^3*g2^8*t^5.77 + g2^11*t^5.85 + 2*t^6. + t^6.38/(g1^3*g2^19) + g1^3*g2^3*t^6.38 + 13*g2^6*t^6.47 + (3*t^6.61)/g2^5 + (3*t^6.84)/(g1^3*g2^13) + 3*g1^3*g2^9*t^6.84 + 7*g2^12*t^6.93 + 15*g2*t^7.08 + (2*t^7.22)/g2^10 + (3*t^7.31)/(g1^3*g2^7) + 3*g1^3*g2^15*t^7.31 + 3*g2^18*t^7.4 + (2*t^7.46)/(g1^3*g2^18) + 2*g1^3*g2^4*t^7.46 + 10*g2^7*t^7.54 + (9*t^7.69)/g2^4 + t^7.78/(g1^3*g2) + g1^3*g2^21*t^7.78 + g2^24*t^7.86 + (3*t^7.92)/(g1^3*g2^12) + 3*g1^3*g2^10*t^7.92 + 4*g2^13*t^8.01 + 4*g2^2*t^8.16 + (4*t^8.3)/g2^9 + t^8.39/(g1^3*g2^6) + g1^3*g2^16*t^8.39 + g2^19*t^8.48 + (3*t^8.53)/(g1^3*g2^17) + 3*g1^3*g2^5*t^8.53 + 20*g2^8*t^8.62 + t^8.77/g2^3 + t^8.91/g2^14 - (g2*t^4.08)/y - (g2^2*t^5.16)/y - (3*g2^3*t^6.23)/y - (g2^9*t^6.7)/y - t^6.84/(g2^2*y) + (2*g2^10*t^7.78)/y + (5*t^7.92)/(g2*y) - (2*g2^5*t^8.39)/y + t^8.53/(g2^6*y) - (2*g2^11*t^8.85)/y - g2*t^4.08*y - g2^2*t^5.16*y - 3*g2^3*t^6.23*y - g2^9*t^6.7*y - (t^6.84*y)/g2^2 + 2*g2^10*t^7.78*y + (5*t^7.92*y)/g2 - 2*g2^5*t^8.39*y + (t^8.53*y)/g2^6 - 2*g2^11*t^8.85*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
59386 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{2}$ 1.2547 1.4781 0.8488 [X:[1.4254], M:[0.7127, 0.8508], q:[0.7891, 0.2145], qb:[0.4982, 0.36], phi:[0.3564]] 3*t^2.14 + t^2.55 + t^2.79 + 2*t^3.21 + t^3.86 + 7*t^4.28 + t^4.52 + 3*t^4.69 + 2*t^4.72 + 4*t^4.93 + t^5.1 + 2*t^5.14 + 6*t^5.35 + t^5.59 + 2*t^5.76 + 2*t^5.79 + 2*t^6. - t^4.07/y - t^5.14/y - t^4.07*y - t^5.14*y detail