Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
61113 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ 1.4128 1.6053 0.8801 [X:[1.4286], M:[0.6881, 0.9738, 0.6881], q:[0.4401, 0.7258], qb:[0.5861, 0.5338], phi:[0.2857]] [X:[[0, 0]], M:[[-1, 1], [-1, 1], [-1, 1]], q:[[-1, -1], [-1, -1]], qb:[[2, 0], [0, 2]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{3}$, ${ }\phi_{1}^{3}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }X_{1}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{3}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }M_{2}M_{3}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ ${}$ -5 2*t^2.06 + t^2.57 + 2*t^2.92 + 2*t^3.78 + 3*t^4.13 + t^4.29 + 4*t^4.64 + 2*t^4.79 + 4*t^4.99 + 3*t^5.49 + t^5.65 + t^5.67 + t^5.82 + 6*t^5.84 + t^5.97 - 5*t^6. - t^6.16 + 4*t^6.19 + 4*t^6.35 + 3*t^6.53 + t^6.68 + 10*t^6.7 + t^6.83 - t^7.01 + 6*t^7.05 - t^7.18 + 4*t^7.21 + 2*t^7.36 + t^7.38 + 2*t^7.39 + t^7.53 + 12*t^7.56 + t^7.69 + 3*t^7.71 + t^7.85 - t^7.87 + t^7.88 - 2*t^7.9 + 10*t^7.91 - t^8.04 - 7*t^8.06 - t^8.2 - t^8.22 + 2*t^8.25 + 5*t^8.26 + t^8.39 + 15*t^8.41 + t^8.55 + t^8.57 + 5*t^8.6 - t^8.73 + 2*t^8.74 - 3*t^8.75 + 18*t^8.76 - 14*t^8.92 + t^8.57/y^2 - (2*t^8.92)/y^2 - t^3.86/y - t^4.71/y - (2*t^5.92)/y - t^6.43/y - (4*t^6.78)/y + t^7.13/y - t^7.29/y - t^7.64/y + t^7.79/y + t^7.99/y - (2*t^8.49)/y - (2*t^8.84)/y - t^3.86*y - t^4.71*y - 2*t^5.92*y - t^6.43*y - 4*t^6.78*y + t^7.13*y - t^7.29*y - t^7.64*y + t^7.79*y + t^7.99*y - 2*t^8.49*y - 2*t^8.84*y + t^8.57*y^2 - 2*t^8.92*y^2 (2*g2*t^2.06)/g1 + t^2.57 + (2*g2*t^2.92)/g1 + (2*g2*t^3.78)/g1 + (3*g2^2*t^4.13)/g1^2 + t^4.29 + (4*g2*t^4.64)/g1 + (2*g1*t^4.79)/g2 + (4*g2^2*t^4.99)/g1^2 + (3*g2*t^5.49)/g1 + (g1*t^5.65)/g2 + t^5.67/(g1^3*g2^3) + g1^2*g2^4*t^5.82 + (6*g2^2*t^5.84)/g1^2 + g1^4*g2^2*t^5.97 - 5*t^6. - (g1^2*t^6.16)/g2^2 + (4*g2^3*t^6.19)/g1^3 + (4*g2*t^6.35)/g1 + (3*t^6.53)/(g1^3*g2^3) + g1^2*g2^4*t^6.68 + (10*g2^2*t^6.7)/g1^2 + g1^4*g2^2*t^6.83 - (g1^2*t^7.01)/g2^2 + (6*g2^3*t^7.05)/g1^3 - g1^3*g2^3*t^7.18 + (4*g2*t^7.21)/g1 + (2*g1*t^7.36)/g2 + g2^6*t^7.38 + (2*t^7.39)/(g1^3*g2^3) + g1^2*g2^4*t^7.53 + (12*g2^2*t^7.56)/g1^2 + g1^4*g2^2*t^7.69 + 3*t^7.71 + g1^6*t^7.85 - (g1^2*t^7.87)/g2^2 + g1*g2^5*t^7.88 - (2*t^7.9)/(g1^2*g2^4) + (10*g2^3*t^7.91)/g1^3 - g1^3*g2^3*t^8.04 - (7*g2*t^8.06)/g1 - g1^5*g2*t^8.2 - (g1*t^8.22)/g2 + (2*t^8.25)/(g1^3*g2^3) + (5*g2^4*t^8.26)/g1^4 + g1^2*g2^4*t^8.39 + (15*g2^2*t^8.41)/g1^2 + g1^4*g2^2*t^8.55 + t^8.57 + (5*t^8.6)/(g1^4*g2^2) - (g1^2*t^8.73)/g2^2 + 2*g1*g2^5*t^8.74 - (3*t^8.75)/(g1^2*g2^4) + (18*g2^3*t^8.76)/g1^3 - (14*g2*t^8.92)/g1 + t^8.57/y^2 - (2*g2*t^8.92)/(g1*y^2) - t^3.86/y - t^4.71/y - (2*g2*t^5.92)/(g1*y) - t^6.43/y - (4*g2*t^6.78)/(g1*y) + (g2^2*t^7.13)/(g1^2*y) - t^7.29/y - (g2*t^7.64)/(g1*y) + (g1*t^7.79)/(g2*y) + (g2^2*t^7.99)/(g1^2*y) - (2*g2*t^8.49)/(g1*y) - (2*g2^2*t^8.84)/(g1^2*y) - t^3.86*y - t^4.71*y - (2*g2*t^5.92*y)/g1 - t^6.43*y - (4*g2*t^6.78*y)/g1 + (g2^2*t^7.13*y)/g1^2 - t^7.29*y - (g2*t^7.64*y)/g1 + (g1*t^7.79*y)/g2 + (g2^2*t^7.99*y)/g1^2 - (2*g2*t^8.49*y)/g1 - (2*g2^2*t^8.84*y)/g1^2 + t^8.57*y^2 - (2*g2*t^8.92*y^2)/g1


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
59445 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ 1.3922 1.5648 0.8897 [X:[1.4286], M:[0.6905, 0.9762], q:[0.4401, 0.7259], qb:[0.5837, 0.536], phi:[0.2857]] t^2.07 + t^2.57 + 2*t^2.93 + 2*t^3.79 + t^3.93 + t^4.14 + t^4.29 + 3*t^4.64 + 2*t^4.79 + 2*t^5. + 3*t^5.5 + t^5.64 + t^5.68 + t^5.82 + 4*t^5.86 + t^5.97 - 4*t^6. - t^3.86/y - t^4.71/y - t^5.93/y - t^3.86*y - t^4.71*y - t^5.93*y detail