Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
61112 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{2}M_{3}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ 1.4209 1.6303 0.8716 [X:[1.2768], M:[0.9889, 0.8192, 1.1808], q:[0.5578, 0.3659], qb:[0.4533, 0.4533], phi:[0.3616]] [X:[[0, 4]], M:[[0, -11], [0, 1], [0, -1]], q:[[-1, 11], [-1, 1]], qb:[[1, 0], [1, 0]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }M_{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$ ${}\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ -1 2*t^2.46 + t^2.97 + t^3.03 + t^3.25 + 2*t^3.54 + t^3.83 + 2*t^4.12 + 2*t^4.63 + 3*t^4.92 + t^4.95 + 2*t^5.16 + 2*t^5.2 + t^5.42 + 2*t^5.49 + t^5.53 + 2*t^5.71 + t^5.93 - t^6. + t^6.04 + t^6.07 + t^6.22 + 2*t^6.25 + 3*t^6.29 + 2*t^6.51 + t^6.55 + 5*t^6.58 + t^6.61 + 3*t^6.8 + t^6.86 - t^7.05 + 5*t^7.08 + t^7.12 + 2*t^7.15 + 4*t^7.33 + 6*t^7.37 + t^7.59 + 3*t^7.62 + 9*t^7.66 + t^7.7 + 3*t^7.88 - t^7.92 + 3*t^7.95 + 3*t^7.99 - 2*t^8.13 + 5*t^8.17 + 2*t^8.2 + t^8.21 + 5*t^8.24 + t^8.27 + t^8.39 + 2*t^8.42 - 3*t^8.46 + t^8.5 + 2*t^8.52 + t^8.56 + t^8.68 + 3*t^8.71 + 11*t^8.75 + t^8.78 + t^8.9 - t^8.97 - t^4.08/y - t^5.17/y - (2*t^6.54)/y - t^7.05/y - t^7.12/y - t^7.34/y - (2*t^7.63)/y + t^7.92/y - t^8.14/y - t^8.2/y + t^8.42/y + (2*t^8.49)/y - t^4.08*y - t^5.17*y - 2*t^6.54*y - t^7.05*y - t^7.12*y - t^7.34*y - 2*t^7.63*y + t^7.92*y - t^8.14*y - t^8.2*y + t^8.42*y + 2*t^8.49*y 2*g2*t^2.46 + t^2.97/g2^11 + g2^11*t^3.03 + t^3.25/g2^6 + (2*t^3.54)/g2 + g2^4*t^3.83 + 2*g2^9*t^4.12 + (2*t^4.63)/g2^3 + 3*g2^2*t^4.92 + (g2^11*t^4.95)/g1^3 + (2*g1^3*t^5.16)/g2^2 + 2*g2^7*t^5.2 + t^5.42/g2^10 + 2*g2^12*t^5.49 + (g2^21*t^5.53)/g1^3 + (2*t^5.71)/g2^5 + t^5.93/g2^22 - t^6. + (g2^9*t^6.04)/g1^3 + g2^22*t^6.07 + t^6.22/g2^17 + (2*g1^3*t^6.25)/g2^4 + 3*g2^5*t^6.29 + (2*t^6.51)/g2^12 + t^6.55/(g1^3*g2^3) + 5*g2^10*t^6.58 + (g2^19*t^6.61)/g1^3 + (3*t^6.8)/g2^7 + g2^15*t^6.86 - (g1^3*t^7.05)/g2^11 + (5*t^7.08)/g2^2 + (g2^7*t^7.12)/g1^3 + 2*g2^20*t^7.15 + (4*g1^3*t^7.33)/g2^6 + 6*g2^3*t^7.37 + t^7.59/g2^14 + (3*g1^3*t^7.62)/g2 + 9*g2^8*t^7.66 + (g2^17*t^7.7)/g1^3 + (3*t^7.88)/g2^9 - t^7.92/g1^3 + 3*g2^13*t^7.95 + (3*g2^22*t^7.99)/g1^3 - (2*g1^3*t^8.13)/g2^13 + (5*t^8.17)/g2^4 + 2*g1^3*g2^9*t^8.2 + (g2^5*t^8.21)/g1^3 + 5*g2^18*t^8.24 + (g2^27*t^8.27)/g1^3 + t^8.39/g2^21 + (2*g1^3*t^8.42)/g2^8 - 3*g2*t^8.46 + (g2^10*t^8.5)/g1^3 + 2*g2^23*t^8.52 + (g2^32*t^8.56)/g1^3 + t^8.68/g2^16 + (3*g1^3*t^8.71)/g2^3 + 11*g2^6*t^8.75 + (g2^15*t^8.78)/g1^3 + t^8.9/g2^33 - t^8.97/g2^11 - t^4.08/(g2^2*y) - t^5.17/(g2^4*y) - (2*t^6.54)/(g2*y) - t^7.05/(g2^13*y) - (g2^9*t^7.12)/y - t^7.34/(g2^8*y) - (2*t^7.63)/(g2^3*y) + (g2^2*t^7.92)/y - t^8.14/(g2^15*y) - (g2^7*t^8.2)/y + t^8.42/(g2^10*y) + (2*g2^12*t^8.49)/y - (t^4.08*y)/g2^2 - (t^5.17*y)/g2^4 - (2*t^6.54*y)/g2 - (t^7.05*y)/g2^13 - g2^9*t^7.12*y - (t^7.34*y)/g2^8 - (2*t^7.63*y)/g2^3 + g2^2*t^7.92*y - (t^8.14*y)/g2^15 - g2^7*t^8.2*y + (t^8.42*y)/g2^10 + 2*g2^12*t^8.49*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
58415 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{2}M_{3}$ 1.4217 1.6321 0.871 [X:[1.2767], M:[0.9722, 0.836, 1.164], q:[0.5576, 0.3657], qb:[0.4703, 0.4366], phi:[0.3616]] t^2.41 + t^2.51 + t^2.92 + t^2.98 + t^3.25 + t^3.49 + t^3.59 + t^3.83 + t^4.07 + t^4.17 + t^4.58 + t^4.68 + t^4.81 + t^4.92 + t^4.95 + t^5.02 + t^5.12 + t^5.15 + t^5.22 + t^5.25 + t^5.32 + t^5.39 + t^5.49 + t^5.53 + t^5.66 + t^5.76 + t^5.83 + t^5.9 + t^5.97 - 2*t^6. - t^4.08/y - t^5.17/y - t^4.08*y - t^5.17*y detail