Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
61103 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ 1.4079 1.5988 0.8806 [X:[1.3879], M:[0.7681, 0.7681, 1.0819], q:[0.3652, 0.6712], qb:[0.5607, 0.5666], phi:[0.306]] [X:[[0, 2]], M:[[3, -3], [3, -3], [0, 3]], q:[[1, 3], [1, 2]], qb:[[-4, 1], [2, 0]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$ ${}$ -4 2*t^2.3 + t^2.78 + t^2.8 + t^3.25 + 2*t^3.71 + t^4.16 + 5*t^4.61 + 2*t^4.63 + t^5.08 + 2*t^5.1 + t^5.12 + t^5.53 + 3*t^5.55 + t^5.56 + t^5.57 + t^5.59 - 4*t^6. + 4*t^6.02 + 4*t^6.04 + 2*t^6.47 + 3*t^6.49 + 2*t^6.51 + 4*t^6.91 + 4*t^6.94 + 5*t^6.96 - t^7.37 + 3*t^7.39 + 3*t^7.4 + 3*t^7.41 + 5*t^7.43 + t^7.8 + 5*t^7.85 + 2*t^7.86 + 5*t^7.88 + 3*t^7.9 + t^7.92 - t^8.27 - 2*t^8.29 - 8*t^8.3 + t^8.31 + 4*t^8.32 + 5*t^8.33 + 11*t^8.35 + 2*t^8.37 + t^8.39 + 3*t^8.77 - 3*t^8.78 + 2*t^8.8 + 3*t^8.81 + 4*t^8.82 + 6*t^8.84 + t^8.75/y^2 - t^3.92/y - t^4.84/y - (2*t^6.22)/y - t^6.7/y - t^6.71/y - (2*t^7.14)/y - t^7.16/y + t^7.61/y - (2*t^7.63)/y + t^8.08/y + (2*t^8.1)/y - (3*t^8.53)/y + t^8.57/y - t^3.92*y - t^4.84*y - 2*t^6.22*y - t^6.7*y - t^6.71*y - 2*t^7.14*y - t^7.16*y + t^7.61*y - 2*t^7.63*y + t^8.08*y + 2*t^8.1*y - 3*t^8.53*y + t^8.57*y + t^8.75*y^2 (2*g1^3*t^2.3)/g2^3 + (g2^4*t^2.78)/g1^3 + g1^3*g2^3*t^2.8 + g2^3*t^3.25 + 2*g1^3*g2^2*t^3.71 + g2^2*t^4.16 + (3*g1^6*t^4.61)/g2^6 + (2*g2^2*t^4.61)/g1^3 + 2*g1^3*g2*t^4.63 + g2*t^5.08 + 2*g1^6*t^5.1 + g1^3*g2^7*t^5.12 + (g2*t^5.53)/g1^3 + 3*g1^3*t^5.55 + (g2^8*t^5.56)/g1^6 + g2^7*t^5.57 + g1^6*g2^6*t^5.59 - 4*t^6. + (3*g1^6*t^6.02)/g2 + (g2^7*t^6.02)/g1^3 + 4*g1^3*g2^6*t^6.04 + (2*g1^3*t^6.47)/g2 + 3*g2^6*t^6.49 + 2*g1^6*g2^5*t^6.51 + (4*g1^9*t^6.91)/g2^9 + (3*g1^6*t^6.94)/g2^2 + (g2^6*t^6.94)/g1^3 + 5*g1^3*g2^5*t^6.96 - t^7.37/(g1^3*g2) + (g1^3*t^7.39)/g2^2 + (2*g2^6*t^7.39)/g1^6 + (3*g1^9*t^7.4)/g2^3 + 3*g2^5*t^7.41 + 5*g1^6*g2^4*t^7.43 + t^7.8/g1^12 + (5*g1^6*t^7.85)/g2^3 + (2*g2^5*t^7.86)/g1^3 + 5*g1^3*g2^4*t^7.88 + 2*g1^9*g2^3*t^7.9 + g2^11*t^7.9 + g1^6*g2^10*t^7.92 - t^8.27/(g1^9*g2) - (2*t^8.29)/(g1^3*g2^2) - (8*g1^3*t^8.3)/g2^3 + (g2^5*t^8.31)/g1^6 + (4*g1^9*t^8.32)/g2^4 + 4*g2^4*t^8.33 + (g2^12*t^8.33)/g1^9 + 10*g1^6*g2^3*t^8.35 + (g2^11*t^8.35)/g1^3 + 2*g1^3*g2^10*t^8.37 + g1^9*g2^9*t^8.39 + (3*g1^6*t^8.77)/g2^4 - (3*g2^4*t^8.78)/g1^3 + g1^3*g2^3*t^8.8 + (g2^11*t^8.8)/g1^6 + 3*g1^9*g2^2*t^8.81 + 4*g2^10*t^8.82 + 6*g1^6*g2^9*t^8.84 + t^8.75/(g2^3*y^2) - t^3.92/(g2*y) - t^4.84/(g2^2*y) - (2*g1^3*t^6.22)/(g2^4*y) - (g2^3*t^6.7)/(g1^3*y) - (g1^3*g2^2*t^6.71)/y - (2*g1^3*t^7.14)/(g2^5*y) - (g2^2*t^7.16)/y + (g1^6*t^7.61)/(g2^6*y) - (2*g1^3*g2*t^7.63)/y + (g2*t^8.08)/y + (2*g1^6*t^8.1)/y - (3*g1^6*t^8.53)/(g2^7*y) + (g2^7*t^8.57)/y - (t^3.92*y)/g2 - (t^4.84*y)/g2^2 - (2*g1^3*t^6.22*y)/g2^4 - (g2^3*t^6.7*y)/g1^3 - g1^3*g2^2*t^6.71*y - (2*g1^3*t^7.14*y)/g2^5 - g2^2*t^7.16*y + (g1^6*t^7.61*y)/g2^6 - 2*g1^3*g2*t^7.63*y + g2*t^8.08*y + 2*g1^6*t^8.1*y - (3*g1^6*t^8.53*y)/g2^7 + g2^7*t^8.57*y + (t^8.75*y^2)/g2^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
58952 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{3}$ 1.4179 1.6198 0.8753 [X:[1.362], M:[0.7767, 0.7767, 1.043], q:[0.3751, 0.6941], qb:[0.5292, 0.4877], phi:[0.319]] 2*t^2.33 + t^2.59 + t^2.71 + t^3.13 + 2*t^3.55 + t^4.09 + 2*t^4.5 + 2*t^4.63 + 3*t^4.66 + 2*t^4.92 + t^5.04 + t^5.18 + t^5.29 + t^5.3 + t^5.43 + 3*t^5.46 + t^5.47 + t^5.58 + t^5.6 + t^5.72 + t^5.84 + 3*t^5.88 - 5*t^6. - t^3.96/y - t^4.91/y - t^3.96*y - t^4.91*y detail