Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
61102 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{2}M_{3}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ | 1.4242 | 1.6337 | 0.8717 | [X:[1.2941], M:[0.9412, 0.8235, 1.1765, 0.9412], q:[0.5947, 0.3595], qb:[0.464, 0.464], phi:[0.353]] | [X:[[0, 0, 4]], M:[[-1, 1, -11], [1, -1, 1], [-1, 1, -1], [1, -1, -11]], q:[[-1, -1, 11], [-1, -1, 1]], qb:[[2, 0, 0], [0, 2, 0]], phi:[[0, 0, -2]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{4}$, ${ }M_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{4}$, ${ }M_{4}^{2}$, ${ }M_{1}^{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$ | ${}M_{1}\phi_{1}^{3}$, ${ }M_{4}\phi_{1}^{3}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ | 0 | 2*t^2.47 + 2*t^2.82 + t^3.18 + 2*t^3.53 + t^3.88 + 2*t^4.24 + 2*t^4.59 + 3*t^4.94 + t^5. + 2*t^5.24 + 5*t^5.29 + 5*t^5.65 + t^5.71 + t^6.06 + 2*t^6.29 + 6*t^6.35 + t^6.41 + 7*t^6.71 + t^6.76 - t^7. + 7*t^7.06 + t^7.12 + 4*t^7.35 + 9*t^7.41 + 3*t^7.71 + 13*t^7.76 + t^7.82 + 11*t^8.12 + 3*t^8.18 + 2*t^8.41 + 6*t^8.47 + 3*t^8.53 + 3*t^8.76 + 8*t^8.82 + 3*t^8.88 - t^4.06/y - t^5.12/y - (2*t^6.53)/y - (2*t^6.88)/y - t^7.24/y - (2*t^7.59)/y - t^7.94/y + (3*t^8.29)/y + t^8.65/y - t^4.06*y - t^5.12*y - 2*t^6.53*y - 2*t^6.88*y - t^7.24*y - 2*t^7.59*y - t^7.94*y + 3*t^8.29*y + t^8.65*y | (g1*g3*t^2.47)/g2 + (g2*g3*t^2.47)/g1 + (g1*t^2.82)/(g2*g3^11) + (g2*t^2.82)/(g1*g3^11) + t^3.18/g3^6 + (g1*t^3.53)/(g2*g3) + (g2*t^3.53)/(g1*g3) + g3^4*t^3.88 + (g1*g3^9*t^4.24)/g2 + (g2*g3^9*t^4.24)/g1 + (g1*t^4.59)/(g2*g3^3) + (g2*t^4.59)/(g1*g3^3) + g3^2*t^4.94 + (g1^2*g3^2*t^4.94)/g2^2 + (g2^2*g3^2*t^4.94)/g1^2 + (g3^11*t^5.)/(g1^3*g2^3) + (g1^4*g2^2*t^5.24)/g3^2 + (g1^2*g2^4*t^5.24)/g3^2 + t^5.29/g3^10 + (g1^2*t^5.29)/(g2^2*g3^10) + (g2^2*t^5.29)/(g1^2*g3^10) + (g1*g3^7*t^5.29)/g2 + (g2*g3^7*t^5.29)/g1 + t^5.65/g3^22 + (g1^2*t^5.65)/(g2^2*g3^22) + (g2^2*t^5.65)/(g1^2*g3^22) + (g1*t^5.65)/(g2*g3^5) + (g2*t^5.65)/(g1*g3^5) + (g3^21*t^5.71)/(g1^3*g2^3) - 2*t^6. + (g1*t^6.)/(g2*g3^17) + (g2*t^6.)/(g1*g3^17) + (g3^9*t^6.06)/(g1^3*g2^3) + (g1^4*g2^2*t^6.29)/g3^4 + (g1^2*g2^4*t^6.29)/g3^4 + (2*t^6.35)/g3^12 + (g1^2*t^6.35)/(g2^2*g3^12) + (g2^2*t^6.35)/(g1^2*g3^12) + (g1*g3^5*t^6.35)/g2 + (g2*g3^5*t^6.35)/g1 + t^6.41/(g1^3*g2^3*g3^3) + (2*g1*t^6.71)/(g2*g3^7) + (2*g2*t^6.71)/(g1*g3^7) + g3^10*t^6.71 + (g1^2*g3^10*t^6.71)/g2^2 + (g2^2*g3^10*t^6.71)/g1^2 + (g3^19*t^6.76)/(g1^3*g2^3) - (g1^3*g2^3*t^7.)/g3^11 + (3*t^7.06)/g3^2 + (2*g1^2*t^7.06)/(g2^2*g3^2) + (2*g2^2*t^7.06)/(g1^2*g3^2) + (g3^7*t^7.12)/(g1^3*g2^3) + (g1^6*t^7.35)/g3^6 + (g1^4*g2^2*t^7.35)/g3^6 + (g1^2*g2^4*t^7.35)/g3^6 + (g2^6*t^7.35)/g3^6 + t^7.41/g3^14 + (g1^2*t^7.41)/(g2^2*g3^14) + (g2^2*t^7.41)/(g1^2*g3^14) + (g1^3*g3^3*t^7.41)/g2^3 + (2*g1*g3^3*t^7.41)/g2 + (2*g2*g3^3*t^7.41)/g1 + (g2^3*g3^3*t^7.41)/g1^3 + (g1^5*g2*t^7.71)/g3 + (g1^3*g2^3*t^7.71)/g3 + (g1*g2^5*t^7.71)/g3 + (g1^3*t^7.76)/(g2^3*g3^9) + (2*g1*t^7.76)/(g2*g3^9) + (2*g2*t^7.76)/(g1*g3^9) + (g2^3*t^7.76)/(g1^3*g3^9) + 3*g3^8*t^7.76 + (2*g1^2*g3^8*t^7.76)/g2^2 + (2*g2^2*g3^8*t^7.76)/g1^2 + (g3^17*t^7.82)/(g1^3*g2^3) + (g1^3*t^8.12)/(g2^3*g3^21) + (g1*t^8.12)/(g2*g3^21) + (g2*t^8.12)/(g1*g3^21) + (g2^3*t^8.12)/(g1^3*g3^21) + (3*t^8.12)/g3^4 + (2*g1^2*t^8.12)/(g2^2*g3^4) + (2*g2^2*t^8.12)/(g1^2*g3^4) + (g3^5*t^8.18)/(g1^3*g2^3) + (g3^22*t^8.18)/(g1^2*g2^4) + (g3^22*t^8.18)/(g1^4*g2^2) + (g1^4*g2^2*t^8.41)/g3^8 + (g1^2*g2^4*t^8.41)/g3^8 + (g1^3*t^8.47)/(g2^3*g3^33) + (g1*t^8.47)/(g2*g3^33) + (g2*t^8.47)/(g1*g3^33) + (g2^3*t^8.47)/(g1^3*g3^33) + t^8.47/g3^16 + (g1^2*t^8.47)/(g2^2*g3^16) + (g2^2*t^8.47)/(g1^2*g3^16) - (2*g1*g3*t^8.47)/g2 - (2*g2*g3*t^8.47)/g1 + g3^18*t^8.47 + (g1^2*g3^18*t^8.47)/g2^2 + (g2^2*g3^18*t^8.47)/g1^2 + (g3^10*t^8.53)/(g1^2*g2^4) + (g3^10*t^8.53)/(g1^4*g2^2) + (g3^27*t^8.53)/(g1^3*g2^3) + (g1^5*g2*t^8.76)/g3^3 + (g1^3*g2^3*t^8.76)/g3^3 + (g1*g2^5*t^8.76)/g3^3 + t^8.82/g3^28 + (g1^2*t^8.82)/(g2^2*g3^28) + (g2^2*t^8.82)/(g1^2*g3^28) - (2*g1*t^8.82)/(g2*g3^11) - (2*g2*t^8.82)/(g1*g3^11) + 3*g3^6*t^8.82 + (3*g1^2*g3^6*t^8.82)/g2^2 + (3*g2^2*g3^6*t^8.82)/g1^2 + t^8.88/(g1^2*g2^4*g3^2) + t^8.88/(g1^4*g2^2*g3^2) + (g3^15*t^8.88)/(g1^3*g2^3) - t^4.06/(g3^2*y) - t^5.12/(g3^4*y) - (g1*t^6.53)/(g2*g3*y) - (g2*t^6.53)/(g1*g3*y) - (g1*t^6.88)/(g2*g3^13*y) - (g2*t^6.88)/(g1*g3^13*y) - t^7.24/(g3^8*y) - (g1*t^7.59)/(g2*g3^3*y) - (g2*t^7.59)/(g1*g3^3*y) - (g1*t^7.94)/(g2*g3^15*y) - (g2*t^7.94)/(g1*g3^15*y) + (g3^2*t^7.94)/y + t^8.29/(g3^10*y) + (g1^2*t^8.29)/(g2^2*g3^10*y) + (g2^2*t^8.29)/(g1^2*g3^10*y) + t^8.65/(g3^22*y) - (t^4.06*y)/g3^2 - (t^5.12*y)/g3^4 - (g1*t^6.53*y)/(g2*g3) - (g2*t^6.53*y)/(g1*g3) - (g1*t^6.88*y)/(g2*g3^13) - (g2*t^6.88*y)/(g1*g3^13) - (t^7.24*y)/g3^8 - (g1*t^7.59*y)/(g2*g3^3) - (g2*t^7.59*y)/(g1*g3^3) - (g1*t^7.94*y)/(g2*g3^15) - (g2*t^7.94*y)/(g1*g3^15) + g3^2*t^7.94*y + (t^8.29*y)/g3^10 + (g1^2*t^8.29*y)/(g2^2*g3^10) + (g2^2*t^8.29*y)/(g1^2*g3^10) + (t^8.65*y)/g3^22 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
58415 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{2}M_{3}$ | 1.4217 | 1.6321 | 0.871 | [X:[1.2767], M:[0.9722, 0.836, 1.164], q:[0.5576, 0.3657], qb:[0.4703, 0.4366], phi:[0.3616]] | t^2.41 + t^2.51 + t^2.92 + t^2.98 + t^3.25 + t^3.49 + t^3.59 + t^3.83 + t^4.07 + t^4.17 + t^4.58 + t^4.68 + t^4.81 + t^4.92 + t^4.95 + t^5.02 + t^5.12 + t^5.15 + t^5.22 + t^5.25 + t^5.32 + t^5.39 + t^5.49 + t^5.53 + t^5.66 + t^5.76 + t^5.83 + t^5.9 + t^5.97 - 2*t^6. - t^4.08/y - t^5.17/y - t^4.08*y - t^5.17*y | detail |