Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
61088 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ 1.4622 1.677 0.8719 [X:[], M:[0.9836, 0.9672], q:[0.5101, 0.5756], qb:[0.4572, 0.4244], phi:[0.3388]] [X:[], M:[[9], [18]], q:[[25], [-11]], qb:[[-7], [11]], phi:[[-3]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ ${}$ -2 t^2.03 + t^2.8 + 2*t^2.9 + t^2.95 + t^3. + t^3.82 + t^3.92 + t^4.02 + t^4.07 + t^4.11 + 2*t^4.84 + 4*t^4.93 + t^4.98 + 3*t^5.03 + t^5.13 + t^5.61 + 2*t^5.71 + t^5.75 + 4*t^5.8 + 3*t^5.85 + 2*t^5.9 + 3*t^5.95 - 2*t^6. + 2*t^6.05 + t^6.15 - t^6.2 + t^6.62 + 3*t^6.72 + t^6.77 + 4*t^6.82 + 4*t^6.87 + 2*t^6.92 + 6*t^6.97 + 2*t^7.02 + 5*t^7.07 - t^7.11 + 2*t^7.16 - t^7.21 + 4*t^7.64 + 7*t^7.74 + t^7.79 + 12*t^7.84 + 3*t^7.89 + 7*t^7.93 + 3*t^7.98 + t^8.03 + 2*t^8.08 - t^8.13 + t^8.18 - t^8.23 + t^8.41 + 2*t^8.51 + t^8.56 + 4*t^8.61 + 4*t^8.66 + 5*t^8.71 + 11*t^8.75 + 12*t^8.85 - 3*t^8.9 + 6*t^8.95 - t^4.02/y - t^5.03/y - t^6.05/y - t^6.82/y - (2*t^6.92)/y - t^6.97/y - t^7.02/y - t^7.07/y + t^7.98/y - t^8.08/y + (2*t^8.71)/y + t^8.75/y + (2*t^8.8)/y + t^8.85/y + (2*t^8.9)/y - t^8.95/y - t^4.02*y - t^5.03*y - t^6.05*y - t^6.82*y - 2*t^6.92*y - t^6.97*y - t^7.02*y - t^7.07*y + t^7.98*y - t^8.08*y + 2*t^8.71*y + t^8.75*y + 2*t^8.8*y + t^8.85*y + 2*t^8.9*y - t^8.95*y t^2.03/g1^6 + g1^36*t^2.8 + 2*g1^18*t^2.9 + g1^9*t^2.95 + t^3. + g1^33*t^3.82 + g1^15*t^3.92 + t^4.02/g1^3 + t^4.07/g1^12 + t^4.11/g1^21 + 2*g1^30*t^4.84 + 4*g1^12*t^4.93 + g1^3*t^4.98 + (3*t^5.03)/g1^6 + t^5.13/g1^24 + g1^72*t^5.61 + 2*g1^54*t^5.71 + g1^45*t^5.75 + 4*g1^36*t^5.8 + 3*g1^27*t^5.85 + 2*g1^18*t^5.9 + 3*g1^9*t^5.95 - 2*t^6. + (2*t^6.05)/g1^9 + t^6.15/g1^27 - t^6.2/g1^36 + g1^69*t^6.62 + 3*g1^51*t^6.72 + g1^42*t^6.77 + 4*g1^33*t^6.82 + 4*g1^24*t^6.87 + 2*g1^15*t^6.92 + 6*g1^6*t^6.97 + (2*t^7.02)/g1^3 + (5*t^7.07)/g1^12 - t^7.11/g1^21 + (2*t^7.16)/g1^30 - t^7.21/g1^39 + 4*g1^66*t^7.64 + 7*g1^48*t^7.74 + g1^39*t^7.79 + 12*g1^30*t^7.84 + 3*g1^21*t^7.89 + 7*g1^12*t^7.93 + 3*g1^3*t^7.98 + t^8.03/g1^6 + (2*t^8.08)/g1^15 - t^8.13/g1^24 + t^8.18/g1^33 - t^8.23/g1^42 + g1^108*t^8.41 + 2*g1^90*t^8.51 + g1^81*t^8.56 + 4*g1^72*t^8.61 + 4*g1^63*t^8.66 + 5*g1^54*t^8.71 + 11*g1^45*t^8.75 + 12*g1^27*t^8.85 - 3*g1^18*t^8.9 + 6*g1^9*t^8.95 - t^4.02/(g1^3*y) - t^5.03/(g1^6*y) - t^6.05/(g1^9*y) - (g1^33*t^6.82)/y - (2*g1^15*t^6.92)/y - (g1^6*t^6.97)/y - t^7.02/(g1^3*y) - t^7.07/(g1^12*y) + (g1^3*t^7.98)/y - t^8.08/(g1^15*y) + (2*g1^54*t^8.71)/y + (g1^45*t^8.75)/y + (2*g1^36*t^8.8)/y + (g1^27*t^8.85)/y + (2*g1^18*t^8.9)/y - (g1^9*t^8.95)/y - (t^4.02*y)/g1^3 - (t^5.03*y)/g1^6 - (t^6.05*y)/g1^9 - g1^33*t^6.82*y - 2*g1^15*t^6.92*y - g1^6*t^6.97*y - (t^7.02*y)/g1^3 - (t^7.07*y)/g1^12 + g1^3*t^7.98*y - (t^8.08*y)/g1^15 + 2*g1^54*t^8.71*y + g1^45*t^8.75*y + 2*g1^36*t^8.8*y + g1^27*t^8.85*y + 2*g1^18*t^8.9*y - g1^9*t^8.95*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
58779 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ 1.4597 1.6708 0.8737 [X:[], M:[0.99], q:[0.5278, 0.5678], qb:[0.4522, 0.4322], phi:[0.3367]] t^2.02 + t^2.88 + t^2.94 + t^2.97 + t^3. + t^3.06 + t^3.89 + t^3.95 + t^4.01 + t^4.04 + t^4.07 + 2*t^4.9 + 3*t^4.96 + t^4.99 + 3*t^5.02 + 2*t^5.08 + t^5.76 + t^5.82 + t^5.85 + 2*t^5.88 + 2*t^5.91 + 2*t^5.94 + 3*t^5.97 - t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail