Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
61060 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}q_{1}\tilde{q}_{2}$ 1.5172 1.7683 0.858 [X:[], M:[0.6726, 0.9911, 0.9796, 0.7018], q:[0.4809, 0.5102], qb:[0.5102, 0.4809], phi:[0.3363]] [X:[], M:[[-2, 0, -2], [3, 0, 3], [-3, -1, 0], [-2, 1, -5]], q:[[3, -1, 3], [3, 0, 0]], qb:[[0, 1, 0], [0, 0, 3]], phi:[[-1, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }\phi_{1}^{2}$, ${ }M_{4}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{3}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{4}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{4}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{3}M_{4}$, ${ }M_{2}M_{4}$, ${ }M_{4}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$ ${}\phi_{1}^{3}q_{2}\tilde{q}_{2}$ -2 2*t^2.02 + t^2.11 + t^2.89 + t^2.94 + 3*t^2.97 + t^3.98 + 3*t^4.04 + t^4.07 + 2*t^4.12 + t^4.21 + 3*t^4.9 + 2*t^4.96 + 9*t^4.99 + t^5.04 + 4*t^5.08 + 2*t^5.43 + 2*t^5.51 + t^5.77 + t^5.82 + 3*t^5.86 + t^5.88 + t^5.91 + 6*t^5.95 - 2*t^6. + 4*t^6.05 + t^6.09 + 3*t^6.14 + t^6.18 + 2*t^6.23 + t^6.32 + 2*t^6.43 + 2*t^6.52 + t^6.87 + 4*t^6.92 + 4*t^6.96 + 3*t^6.97 + 14*t^7.01 + 3*t^7.04 + 2*t^7.06 + 9*t^7.1 + t^7.15 + 4*t^7.18 + 2*t^7.36 + 4*t^7.44 + 6*t^7.53 + 4*t^7.62 + 3*t^7.79 + 3*t^7.84 + 11*t^7.88 + 2*t^7.9 + 3*t^7.93 + 20*t^7.96 + t^7.98 - 5*t^8.02 + 9*t^8.05 + 5*t^8.07 - 5*t^8.11 + t^8.14 + 4*t^8.16 + t^8.19 + 3*t^8.25 + t^8.28 + 2*t^8.31 + 2*t^8.33 + 8*t^8.4 + t^8.42 + 6*t^8.49 + t^8.66 + t^8.71 + 3*t^8.74 + t^8.76 + t^8.8 + t^8.82 + 6*t^8.83 + t^8.85 - 2*t^8.89 + 10*t^8.92 + 2*t^8.94 - 5*t^8.97 + 4*t^8.99 - t^4.01/y - t^5.02/y - (2*t^6.03)/y - t^6.11/y - t^6.89/y - t^6.95/y - (3*t^6.98)/y - t^7.04/y + t^7.12/y + (2*t^7.9)/y + t^7.96/y + (6*t^7.99)/y - (2*t^8.04)/y + (3*t^8.08)/y - (2*t^8.13)/y - t^8.22/y + t^8.82/y + (3*t^8.86)/y + t^8.91/y + (3*t^8.95)/y - (2*t^8.97)/y - t^4.01*y - t^5.02*y - 2*t^6.03*y - t^6.11*y - t^6.89*y - t^6.95*y - 3*t^6.98*y - t^7.04*y + t^7.12*y + 2*t^7.9*y + t^7.96*y + 6*t^7.99*y - 2*t^8.04*y + 3*t^8.08*y - 2*t^8.13*y - t^8.22*y + t^8.82*y + 3*t^8.86*y + t^8.91*y + 3*t^8.95*y - 2*t^8.97*y (2*t^2.02)/(g1^2*g3^2) + (g2*t^2.11)/(g1^2*g3^5) + (g1^3*g3^6*t^2.89)/g2 + t^2.94/(g1^3*g2) + 3*g1^3*g3^3*t^2.97 + g1^2*g3^2*t^3.98 + (3*t^4.04)/(g1^4*g3^4) + (g1^2*g2*t^4.07)/g3 + (2*g2*t^4.12)/(g1^4*g3^7) + (g2^2*t^4.21)/(g1^4*g3^10) + (3*g1*g3^4*t^4.9)/g2 + (2*t^4.96)/(g1^5*g2*g3^2) + 9*g1*g3*t^4.99 + t^5.04/(g1^5*g3^5) + (4*g1*g2*t^5.08)/g3^2 + (g1^8*g3^5*t^5.43)/g2^2 + (g2*g3^5*t^5.43)/g1 + (g1^8*g3^2*t^5.51)/g2 + (g2^2*g3^2*t^5.51)/g1 + (g1^6*g3^12*t^5.77)/g2^2 + (g3^6*t^5.82)/g2^2 + (3*g1^6*g3^9*t^5.86)/g2 + t^5.88/(g1^6*g2^2) + (g3^3*t^5.91)/g2 + 6*g1^6*g3^6*t^5.95 - 2*t^6. + (4*t^6.05)/(g1^6*g3^6) + (g2*t^6.09)/g3^3 + (3*g2*t^6.14)/(g1^6*g3^9) + (g2^2*t^6.18)/g3^6 + (2*g2^2*t^6.23)/(g1^6*g3^12) + (g2^3*t^6.32)/(g1^6*g3^15) + (g1^7*g3^4*t^6.43)/g2^2 + (g2*g3^4*t^6.43)/g1^2 + (g1^7*g3*t^6.52)/g2 + (g2^2*g3*t^6.52)/g1^2 + (g1^5*g3^8*t^6.87)/g2 + (4*g3^2*t^6.92)/(g1*g2) + 4*g1^5*g3^5*t^6.96 + (3*t^6.97)/(g1^7*g2*g3^4) + (14*t^7.01)/(g1*g3) + 3*g1^5*g2*g3^2*t^7.04 + (2*t^7.06)/(g1^7*g3^7) + (9*g2*t^7.1)/(g1*g3^4) + (g2*t^7.15)/(g1^7*g3^10) + (4*g2^2*t^7.18)/(g1*g3^7) + (g3^6*t^7.36)/g1^3 + (g1^6*g3^6*t^7.36)/g2^3 + (2*g1^6*g3^3*t^7.44)/g2^2 + (2*g2*g3^3*t^7.44)/g1^3 + (3*g1^6*t^7.53)/g2 + (3*g2^2*t^7.53)/g1^3 + (2*g1^6*t^7.62)/g3^3 + (2*g2^3*t^7.62)/(g1^3*g3^3) + (3*g1^4*g3^10*t^7.79)/g2^2 + (3*g3^4*t^7.84)/(g1^2*g2^2) + (11*g1^4*g3^7*t^7.88)/g2 + (2*t^7.9)/(g1^8*g2^2*g3^2) + (3*g3*t^7.93)/(g1^2*g2) + 20*g1^4*g3^4*t^7.96 + t^7.98/(g1^8*g2*g3^5) - (5*t^8.02)/(g1^2*g3^2) + 9*g1^4*g2*g3*t^8.05 + (5*t^8.07)/(g1^8*g3^8) - (5*g2*t^8.11)/(g1^2*g3^5) + (g1^4*g2^2*t^8.14)/g3^2 + (4*g2*t^8.16)/(g1^8*g3^11) + (g2^2*t^8.19)/(g1^2*g3^8) + (3*g2^2*t^8.25)/(g1^8*g3^14) + (g2^3*t^8.28)/(g1^2*g3^11) + g1^2*g3^11*t^8.31 + (g1^11*g3^11*t^8.31)/g2^3 + (2*g2^3*t^8.33)/(g1^8*g3^17) + (4*g1^11*g3^8*t^8.4)/g2^2 + 4*g1^2*g2*g3^8*t^8.4 + (g2^4*t^8.42)/(g1^8*g3^20) + (3*g1^11*g3^5*t^8.49)/g2 + 3*g1^2*g2^2*g3^5*t^8.49 + (g1^9*g3^18*t^8.66)/g2^3 + (g1^3*g3^12*t^8.71)/g2^3 + (3*g1^9*g3^15*t^8.74)/g2^2 + (g3^6*t^8.76)/(g1^3*g2^3) + (g1^3*g3^9*t^8.8)/g2^2 + t^8.82/(g1^9*g2^3) + (6*g1^9*g3^12*t^8.83)/g2 + (g3^3*t^8.85)/(g1^3*g2^2) - (2*g1^3*g3^6*t^8.89)/g2 + 10*g1^9*g3^9*t^8.92 + (2*t^8.94)/(g1^3*g2) - 5*g1^3*g3^3*t^8.97 + (4*t^8.99)/(g1^9*g2*g3^6) - t^4.01/(g1*g3*y) - t^5.02/(g1^2*g3^2*y) - (2*t^6.03)/(g1^3*g3^3*y) - (g2*t^6.11)/(g1^3*g3^6*y) - (g1^2*g3^5*t^6.89)/(g2*y) - t^6.95/(g1^4*g2*g3*y) - (3*g1^2*g3^2*t^6.98)/y - t^7.04/(g1^4*g3^4*y) + (g2*t^7.12)/(g1^4*g3^7*y) + (2*g1*g3^4*t^7.9)/(g2*y) + t^7.96/(g1^5*g2*g3^2*y) + (6*g1*g3*t^7.99)/y - (2*t^8.04)/(g1^5*g3^5*y) + (3*g1*g2*t^8.08)/(g3^2*y) - (2*g2*t^8.13)/(g1^5*g3^8*y) - (g2^2*t^8.22)/(g1^5*g3^11*y) + (g3^6*t^8.82)/(g2^2*y) + (3*g1^6*g3^9*t^8.86)/(g2*y) + (g3^3*t^8.91)/(g2*y) + (3*g1^6*g3^6*t^8.95)/y - (2*t^8.97)/(g1^6*g2*g3^3*y) - (t^4.01*y)/(g1*g3) - (t^5.02*y)/(g1^2*g3^2) - (2*t^6.03*y)/(g1^3*g3^3) - (g2*t^6.11*y)/(g1^3*g3^6) - (g1^2*g3^5*t^6.89*y)/g2 - (t^6.95*y)/(g1^4*g2*g3) - 3*g1^2*g3^2*t^6.98*y - (t^7.04*y)/(g1^4*g3^4) + (g2*t^7.12*y)/(g1^4*g3^7) + (2*g1*g3^4*t^7.9*y)/g2 + (t^7.96*y)/(g1^5*g2*g3^2) + 6*g1*g3*t^7.99*y - (2*t^8.04*y)/(g1^5*g3^5) + (3*g1*g2*t^8.08*y)/g3^2 - (2*g2*t^8.13*y)/(g1^5*g3^8) - (g2^2*t^8.22*y)/(g1^5*g3^11) + (g3^6*t^8.82*y)/g2^2 + (3*g1^6*g3^9*t^8.86*y)/g2 + (g3^3*t^8.91*y)/g2 + 3*g1^6*g3^6*t^8.95*y - (2*t^8.97*y)/(g1^6*g2*g3^3)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
58947 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ 1.4968 1.7302 0.8651 [X:[], M:[0.6747, 0.988, 0.9756], q:[0.4758, 0.5122], qb:[0.5122, 0.4758], phi:[0.3373]] 2*t^2.02 + t^2.85 + t^2.93 + 3*t^2.96 + t^3.87 + t^3.98 + 3*t^4.05 + t^4.09 + 3*t^4.88 + 2*t^4.95 + 8*t^4.99 + t^5.1 + 2*t^5.4 + 2*t^5.51 + t^5.71 + t^5.78 + 3*t^5.82 + t^5.85 + 3*t^5.89 + 6*t^5.93 - 2*t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail