Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
61037 | SU3adj1nf2 | ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ | 1.3409 | 1.5784 | 0.8495 | [X:[1.4], M:[1.0, 0.8], q:[0.2848, 0.4576], qb:[0.3152, 0.5424], phi:[0.4]] | [X:[[0]], M:[[0], [0]], q:[[2], [-1]], qb:[[-2], [1]], phi:[[0]]] | 1 | {a: 47199/35200, c: 55559/35200, X1: 7/5, M1: 1, M2: 4/5, q1: 47/165, q2: 151/330, qb1: 52/165, qb2: 179/330, phi1: 2/5} |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$ | ${}M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ 2}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$ | 2 | t^2.32 + 2*t^2.4 + t^2.48 + 2*t^3. + t^3.52 + t^3.68 + 3*t^4.2 + t^4.28 + t^4.64 + 4*t^4.72 + 5*t^4.8 + 3*t^4.88 + t^4.96 + t^5.32 + 6*t^5.4 + 2*t^5.48 + t^5.84 + 3*t^5.92 + 2*t^6. + 2*t^6.08 + 2*t^6.16 + t^6.44 + 3*t^6.52 + 6*t^6.6 + 6*t^6.68 + t^6.76 + t^6.95 + 5*t^7.04 + 9*t^7.12 + 14*t^7.2 + 6*t^7.28 + 4*t^7.36 + t^7.45 + t^7.64 + 8*t^7.72 + 10*t^7.8 + 8*t^7.88 + 2*t^7.96 + t^8.15 + 4*t^8.24 + 3*t^8.32 + 11*t^8.4 + 5*t^8.48 + 5*t^8.56 + 2*t^8.65 + t^8.75 + 3*t^8.84 + 11*t^8.92 - t^4.2/y - t^5.4/y - t^6.52/y - (2*t^6.6)/y - t^6.68/y - t^7.2/y + t^7.72/y + t^7.8/y + t^7.88/y + (2*t^8.32)/y + t^8.4/y + (2*t^8.48)/y - t^8.92/y - t^4.2*y - t^5.4*y - t^6.52*y - 2*t^6.6*y - t^6.68*y - t^7.2*y + t^7.72*y + t^7.8*y + t^7.88*y + 2*t^8.32*y + t^8.4*y + 2*t^8.48*y - t^8.92*y | t^2.32/g1^3 + 2*t^2.4 + g1^3*t^2.48 + 2*t^3. + t^3.52/g1^3 + g1^3*t^3.68 + 3*t^4.2 + g1^3*t^4.28 + t^4.64/g1^6 + (4*t^4.72)/g1^3 + 5*t^4.8 + 3*g1^3*t^4.88 + g1^6*t^4.96 + t^5.32/g1^3 + 6*t^5.4 + 2*g1^3*t^5.48 + t^5.84/g1^6 + (3*t^5.92)/g1^3 + 2*t^6. + 2*g1^3*t^6.08 + 2*g1^6*t^6.16 + t^6.44/g1^6 + (3*t^6.52)/g1^3 + 6*t^6.6 + 6*g1^3*t^6.68 + g1^6*t^6.76 + t^6.95/g1^9 + (5*t^7.04)/g1^6 + (9*t^7.12)/g1^3 + 14*t^7.2 + 6*g1^3*t^7.28 + 4*g1^6*t^7.36 + g1^9*t^7.45 + t^7.64/g1^6 + (8*t^7.72)/g1^3 + 10*t^7.8 + 8*g1^3*t^7.88 + 2*g1^6*t^7.96 + t^8.15/g1^9 + (4*t^8.24)/g1^6 + (3*t^8.32)/g1^3 + 11*t^8.4 + 5*g1^3*t^8.48 + 5*g1^6*t^8.56 + 2*g1^9*t^8.65 + t^8.75/g1^9 + (3*t^8.84)/g1^6 + (11*t^8.92)/g1^3 - t^4.2/y - t^5.4/y - t^6.52/(g1^3*y) - (2*t^6.6)/y - (g1^3*t^6.68)/y - t^7.2/y + t^7.72/(g1^3*y) + t^7.8/y + (g1^3*t^7.88)/y + (2*t^8.32)/(g1^3*y) + t^8.4/y + (2*g1^3*t^8.48)/y - t^8.92/(g1^3*y) - t^4.2*y - t^5.4*y - (t^6.52*y)/g1^3 - 2*t^6.6*y - g1^3*t^6.68*y - t^7.2*y + (t^7.72*y)/g1^3 + t^7.8*y + g1^3*t^7.88*y + (2*t^8.32*y)/g1^3 + t^8.4*y + 2*g1^3*t^8.48*y - (t^8.92*y)/g1^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
58386 | SU3adj1nf2 | ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$ | 1.4435 | 1.7195 | 0.8395 | [X:[], M:[0.7838, 0.8], q:[0.4098, 0.3951], qb:[0.4065, 0.3887], phi:[0.4]] | 2*t^2.35 + 4*t^2.4 + t^2.45 + t^3.55 + 2*t^3.6 + 3*t^4.7 + 8*t^4.75 + 2*t^4.76 + t^4.79 + 14*t^4.8 + t^4.81 + 2*t^4.84 + 4*t^4.85 + t^4.9 + 2*t^5.9 + 5*t^5.95 + 2*t^5.96 + t^5.99 + 5*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y | detail |