Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
61034 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ + ${ }M_{4}\phi_{1}^{3}$ 1.5377 1.8099 0.8496 [X:[], M:[0.6954, 0.6782, 0.6782, 0.9827], q:[0.4827, 0.5], qb:[0.4827, 0.5], phi:[0.3391]] [X:[], M:[[-5, -5, 0], [1, -5, 1], [-5, 1, -1], [3, 3, 0]], q:[[6, 0, 0], [0, 0, -1]], qb:[[0, 6, 0], [0, 0, 1]], phi:[[-1, -1, 0]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }M_{3}$, ${ }M_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{4}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{4}$, ${ }M_{3}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}M_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{4}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{4}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{4}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$ ${}$ -3 3*t^2.03 + t^2.09 + t^2.9 + 3*t^2.95 + t^3. + t^4.02 + 6*t^4.07 + 3*t^4.12 + t^4.17 + 4*t^4.93 + 12*t^4.98 + 7*t^5.03 + t^5.09 + 2*t^5.41 + 2*t^5.47 + t^5.79 + 3*t^5.84 + 7*t^5.9 + t^5.95 - 3*t^6. + t^6.05 + 11*t^6.1 + 6*t^6.16 + 3*t^6.21 + t^6.26 + 2*t^6.43 + 2*t^6.48 + t^6.91 + 10*t^6.97 + 26*t^7.02 + 19*t^7.07 + 7*t^7.12 + t^7.17 + 2*t^7.4 + 6*t^7.45 + 8*t^7.5 + 4*t^7.55 + 4*t^7.83 + 14*t^7.88 + 29*t^7.93 + 12*t^7.98 - 8*t^8.03 - 5*t^8.09 + 16*t^8.14 + 11*t^8.19 + 6*t^8.24 + 3*t^8.29 + 2*t^8.31 + t^8.35 + 8*t^8.36 + 6*t^8.41 + 2*t^8.47 + 2*t^8.52 + t^8.69 + 3*t^8.74 + 7*t^8.79 + 11*t^8.84 - 4*t^8.9 - 12*t^8.95 - t^4.02/y - t^5.03/y - (3*t^6.05)/y - t^6.1/y - t^6.91/y - (3*t^6.97)/y - t^7.02/y + (2*t^7.12)/y + (3*t^7.93)/y + (10*t^7.98)/y + (5*t^8.03)/y - (5*t^8.09)/y - (3*t^8.14)/y - t^8.19/y + (3*t^8.84)/y + (4*t^8.9)/y - t^4.02*y - t^5.03*y - 3*t^6.05*y - t^6.1*y - t^6.91*y - 3*t^6.97*y - t^7.02*y + 2*t^7.12*y + 3*t^7.93*y + 10*t^7.98*y + 5*t^8.03*y - 5*t^8.09*y - 3*t^8.14*y - t^8.19*y + 3*t^8.84*y + 4*t^8.9*y t^2.03/(g1^2*g2^2) + (g2*t^2.03)/(g1^5*g3) + (g1*g3*t^2.03)/g2^5 + t^2.09/(g1^5*g2^5) + g1^6*g2^6*t^2.9 + g1^3*g2^3*t^2.95 + (g2^6*t^2.95)/g3 + g1^6*g3*t^2.95 + t^3. + t^4.02/(g1*g2) + (2*t^4.07)/(g1^4*g2^4) + (g2^2*t^4.07)/(g1^10*g3^2) + t^4.07/(g1^7*g2*g3) + (g3*t^4.07)/(g1*g2^7) + (g1^2*g3^2*t^4.07)/g2^10 + t^4.12/(g1^7*g2^7) + t^4.12/(g1^10*g2^4*g3) + (g3*t^4.12)/(g1^4*g2^10) + t^4.17/(g1^10*g2^10) + 2*g1^4*g2^4*t^4.93 + (g1*g2^7*t^4.93)/g3 + g1^7*g2*g3*t^4.93 + 4*g1*g2*t^4.98 + (g2^7*t^4.98)/(g1^5*g3^2) + (3*g2^4*t^4.98)/(g1^2*g3) + (3*g1^4*g3*t^4.98)/g2^2 + (g1^7*g3^2*t^4.98)/g2^5 + (3*t^5.03)/(g1^2*g2^2) + (2*g2*t^5.03)/(g1^5*g3) + (2*g1*g3*t^5.03)/g2^5 + t^5.09/(g1^5*g2^5) + (g1^11*t^5.41)/(g2*g3) + (g2^11*g3*t^5.41)/g1 + (g1^5*t^5.47)/(g2*g3^2) + (g2^5*g3^2*t^5.47)/g1 + g1^12*g2^12*t^5.79 + g1^9*g2^9*t^5.84 + (g1^6*g2^12*t^5.84)/g3 + g1^12*g2^6*g3*t^5.84 + 3*g1^6*g2^6*t^5.9 + (g2^12*t^5.9)/g3^2 + (g1^3*g2^9*t^5.9)/g3 + g1^9*g2^3*g3*t^5.9 + g1^12*g3^2*t^5.9 + g1^3*g2^3*t^5.95 - 3*t^6. + t^6.05/(g1^3*g2^3) + (3*t^6.1)/(g1^6*g2^6) + (g2^3*t^6.1)/(g1^15*g3^3) + t^6.1/(g1^12*g3^2) + (2*t^6.1)/(g1^9*g2^3*g3) + (2*g3*t^6.1)/(g1^3*g2^9) + (g3^2*t^6.1)/g2^12 + (g1^3*g3^3*t^6.1)/g2^15 + (2*t^6.16)/(g1^9*g2^9) + t^6.16/(g1^15*g2^3*g3^2) + t^6.16/(g1^12*g2^6*g3) + (g3*t^6.16)/(g1^6*g2^12) + (g3^2*t^6.16)/(g1^3*g2^15) + t^6.21/(g1^12*g2^12) + t^6.21/(g1^15*g2^9*g3) + (g3*t^6.21)/(g1^9*g2^15) + t^6.26/(g1^15*g2^15) + (g1^10*t^6.43)/(g2^2*g3) + (g2^10*g3*t^6.43)/g1^2 + (g1^4*t^6.48)/(g2^2*g3^2) + (g2^4*g3^2*t^6.48)/g1^2 + g1^5*g2^5*t^6.91 + 4*g1^2*g2^2*t^6.97 + (g2^8*t^6.97)/(g1^4*g3^2) + (2*g2^5*t^6.97)/(g1*g3) + (2*g1^5*g3*t^6.97)/g2 + (g1^8*g3^2*t^6.97)/g2^4 + (6*t^7.02)/(g1*g2) + (g2^8*t^7.02)/(g1^10*g3^3) + (3*g2^5*t^7.02)/(g1^7*g3^2) + (6*g2^2*t^7.02)/(g1^4*g3) + (6*g1^2*g3*t^7.02)/g2^4 + (3*g1^5*g3^2*t^7.02)/g2^7 + (g1^8*g3^3*t^7.02)/g2^10 + (7*t^7.07)/(g1^4*g2^4) + (2*g2^2*t^7.07)/(g1^10*g3^2) + (4*t^7.07)/(g1^7*g2*g3) + (4*g3*t^7.07)/(g1*g2^7) + (2*g1^2*g3^2*t^7.07)/g2^10 + (3*t^7.12)/(g1^7*g2^7) + (2*t^7.12)/(g1^10*g2^4*g3) + (2*g3*t^7.12)/(g1^4*g2^10) + t^7.17/(g1^10*g2^10) + (g1^15*t^7.4)/g2^3 + (g2^15*t^7.4)/g1^3 + (g1^12*t^7.45)/g2^6 + (g2^12*t^7.45)/g1^6 + (2*g1^9*t^7.45)/(g2^3*g3) + (2*g2^9*g3*t^7.45)/g1^3 + t^7.5/g3^3 + (2*g1^3*t^7.5)/(g2^3*g3^2) + (g1^6*t^7.5)/(g2^6*g3) + (g2^6*g3*t^7.5)/g1^6 + (2*g2^3*g3^2*t^7.5)/g1^3 + g3^3*t^7.5 + t^7.55/(g1^3*g2^3*g3^3) + t^7.55/(g2^6*g3^2) + (g3^2*t^7.55)/g1^6 + (g3^3*t^7.55)/(g1^3*g2^3) + 2*g1^10*g2^10*t^7.83 + (g1^7*g2^13*t^7.83)/g3 + g1^13*g2^7*g3*t^7.83 + 4*g1^7*g2^7*t^7.88 + (g1*g2^13*t^7.88)/g3^2 + (4*g1^4*g2^10*t^7.88)/g3 + 4*g1^10*g2^4*g3*t^7.88 + g1^13*g2*g3^2*t^7.88 + 9*g1^4*g2^4*t^7.93 + (g2^13*t^7.93)/(g1^5*g3^3) + (3*g2^10*t^7.93)/(g1^2*g3^2) + (6*g1*g2^7*t^7.93)/g3 + 6*g1^7*g2*g3*t^7.93 + (3*g1^10*g3^2*t^7.93)/g2^2 + (g1^13*g3^3*t^7.93)/g2^5 + 4*g1*g2*t^7.98 + (g2^7*t^7.98)/(g1^5*g3^2) + (3*g2^4*t^7.98)/(g1^2*g3) + (3*g1^4*g3*t^7.98)/g2^2 + (g1^7*g3^2*t^7.98)/g2^5 - (2*t^8.03)/(g1^2*g2^2) - (3*g2*t^8.03)/(g1^5*g3) - (3*g1*g3*t^8.03)/g2^5 - (3*t^8.09)/(g1^5*g2^5) - t^8.09/(g1^8*g2^2*g3) - (g3*t^8.09)/(g1^2*g2^8) + (4*t^8.14)/(g1^8*g2^8) + (g2^4*t^8.14)/(g1^20*g3^4) + (g2*t^8.14)/(g1^17*g3^3) + (2*t^8.14)/(g1^14*g2^2*g3^2) + (2*t^8.14)/(g1^11*g2^5*g3) + (2*g3*t^8.14)/(g1^5*g2^11) + (2*g3^2*t^8.14)/(g1^2*g2^14) + (g1*g3^3*t^8.14)/g2^17 + (g1^4*g3^4*t^8.14)/g2^20 + (3*t^8.19)/(g1^11*g2^11) + t^8.19/(g1^20*g2^2*g3^3) + t^8.19/(g1^17*g2^5*g3^2) + (2*t^8.19)/(g1^14*g2^8*g3) + (2*g3*t^8.19)/(g1^8*g2^14) + (g3^2*t^8.19)/(g1^5*g2^17) + (g3^3*t^8.19)/(g1^2*g2^20) + (2*t^8.24)/(g1^14*g2^14) + t^8.24/(g1^20*g2^8*g3^2) + t^8.24/(g1^17*g2^11*g3) + (g3*t^8.24)/(g1^11*g2^17) + (g3^2*t^8.24)/(g1^8*g2^20) + t^8.29/(g1^17*g2^17) + t^8.29/(g1^20*g2^14*g3) + (g3*t^8.29)/(g1^14*g2^20) + (g1^17*g2^5*t^8.31)/g3 + g1^5*g2^17*g3*t^8.31 + t^8.35/(g1^20*g2^20) + (g1^17*t^8.36)/g2 + (g2^17*t^8.36)/g1 + (2*g1^11*g2^5*t^8.36)/g3^2 + (g1^14*g2^2*t^8.36)/g3 + g1^2*g2^14*g3*t^8.36 + 2*g1^5*g2^11*g3^2*t^8.36 + (g1^5*g2^5*t^8.41)/g3^3 + (g1^8*g2^2*t^8.41)/g3^2 + (g1^11*t^8.41)/(g2*g3) + (g2^11*g3*t^8.41)/g1 + g1^2*g2^8*g3^2*t^8.41 + g1^5*g2^5*g3^3*t^8.41 + (g1^8*t^8.47)/(g2^4*g3) + (g2^8*g3*t^8.47)/g1^4 + (g1^2*t^8.52)/(g2^4*g3^2) + (g2^2*g3^2*t^8.52)/g1^4 + g1^18*g2^18*t^8.69 + g1^15*g2^15*t^8.74 + (g1^12*g2^18*t^8.74)/g3 + g1^18*g2^12*g3*t^8.74 + 3*g1^12*g2^12*t^8.79 + (g1^6*g2^18*t^8.79)/g3^2 + (g1^9*g2^15*t^8.79)/g3 + g1^15*g2^9*g3*t^8.79 + g1^18*g2^6*g3^2*t^8.79 + 3*g1^9*g2^9*t^8.84 + (g2^18*t^8.84)/g3^3 + (g1^3*g2^15*t^8.84)/g3^2 + (2*g1^6*g2^12*t^8.84)/g3 + 2*g1^12*g2^6*g3*t^8.84 + g1^15*g2^3*g3^2*t^8.84 + g1^18*g3^3*t^8.84 - 4*g1^6*g2^6*t^8.9 - 2*g1^3*g2^3*t^8.95 - (5*g2^6*t^8.95)/g3 - 5*g1^6*g3*t^8.95 - t^4.02/(g1*g2*y) - t^5.03/(g1^2*g2^2*y) - t^6.05/(g1^3*g2^3*y) - t^6.05/(g1^6*g3*y) - (g3*t^6.05)/(g2^6*y) - t^6.1/(g1^6*g2^6*y) - (g1^5*g2^5*t^6.91)/y - (g1^2*g2^2*t^6.97)/y - (g2^5*t^6.97)/(g1*g3*y) - (g1^5*g3*t^6.97)/(g2*y) - t^7.02/(g1*g2*y) + t^7.12/(g1^10*g2^4*g3*y) + (g3*t^7.12)/(g1^4*g2^10*y) + (g1^4*g2^4*t^7.93)/y + (g1*g2^7*t^7.93)/(g3*y) + (g1^7*g2*g3*t^7.93)/y + (4*g1*g2*t^7.98)/y + (g2^7*t^7.98)/(g1^5*g3^2*y) + (2*g2^4*t^7.98)/(g1^2*g3*y) + (2*g1^4*g3*t^7.98)/(g2^2*y) + (g1^7*g3^2*t^7.98)/(g2^5*y) + t^8.03/(g1^2*g2^2*y) + (2*g2*t^8.03)/(g1^5*g3*y) + (2*g1*g3*t^8.03)/(g2^5*y) - t^8.09/(g1^5*g2^5*y) - (g2*t^8.09)/(g1^11*g3^2*y) - t^8.09/(g1^8*g2^2*g3*y) - (g3*t^8.09)/(g1^2*g2^8*y) - (g1*g3^2*t^8.09)/(g2^11*y) - t^8.14/(g1^8*g2^8*y) - t^8.14/(g1^11*g2^5*g3*y) - (g3*t^8.14)/(g1^5*g2^11*y) - t^8.19/(g1^11*g2^11*y) + (g1^9*g2^9*t^8.84)/y + (g1^6*g2^12*t^8.84)/(g3*y) + (g1^12*g2^6*g3*t^8.84)/y + (2*g1^6*g2^6*t^8.9)/y + (g1^3*g2^9*t^8.9)/(g3*y) + (g1^9*g2^3*g3*t^8.9)/y - (t^4.02*y)/(g1*g2) - (t^5.03*y)/(g1^2*g2^2) - (t^6.05*y)/(g1^3*g2^3) - (t^6.05*y)/(g1^6*g3) - (g3*t^6.05*y)/g2^6 - (t^6.1*y)/(g1^6*g2^6) - g1^5*g2^5*t^6.91*y - g1^2*g2^2*t^6.97*y - (g2^5*t^6.97*y)/(g1*g3) - (g1^5*g3*t^6.97*y)/g2 - (t^7.02*y)/(g1*g2) + (t^7.12*y)/(g1^10*g2^4*g3) + (g3*t^7.12*y)/(g1^4*g2^10) + g1^4*g2^4*t^7.93*y + (g1*g2^7*t^7.93*y)/g3 + g1^7*g2*g3*t^7.93*y + 4*g1*g2*t^7.98*y + (g2^7*t^7.98*y)/(g1^5*g3^2) + (2*g2^4*t^7.98*y)/(g1^2*g3) + (2*g1^4*g3*t^7.98*y)/g2^2 + (g1^7*g3^2*t^7.98*y)/g2^5 + (t^8.03*y)/(g1^2*g2^2) + (2*g2*t^8.03*y)/(g1^5*g3) + (2*g1*g3*t^8.03*y)/g2^5 - (t^8.09*y)/(g1^5*g2^5) - (g2*t^8.09*y)/(g1^11*g3^2) - (t^8.09*y)/(g1^8*g2^2*g3) - (g3*t^8.09*y)/(g1^2*g2^8) - (g1*g3^2*t^8.09*y)/g2^11 - (t^8.14*y)/(g1^8*g2^8) - (t^8.14*y)/(g1^11*g2^5*g3) - (g3*t^8.14*y)/(g1^5*g2^11) - (t^8.19*y)/(g1^11*g2^11) + g1^9*g2^9*t^8.84*y + (g1^6*g2^12*t^8.84*y)/g3 + g1^12*g2^6*g3*t^8.84*y + 2*g1^6*g2^6*t^8.9*y + (g1^3*g2^9*t^8.9*y)/g3 + g1^9*g2^3*g3*t^8.9*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
59060 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ 1.5366 1.8075 0.8501 [X:[], M:[0.6763, 0.6705, 0.6705], q:[0.4942, 0.5], qb:[0.4942, 0.5], phi:[0.3353]] 3*t^2.01 + t^2.03 + t^2.97 + 2*t^2.98 + t^3. + t^3.02 + t^4.01 + 6*t^4.02 + 3*t^4.04 + t^4.06 + 4*t^4.98 + 9*t^4.99 + 6*t^5.01 + 4*t^5.03 + t^5.05 + 2*t^5.47 + 2*t^5.49 + t^5.93 + 2*t^5.95 + 4*t^5.97 + t^5.98 - t^6. - t^4.01/y - t^5.01/y - t^4.01*y - t^5.01*y detail