Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
61033 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{2}$ | 1.4176 | 1.6252 | 0.8722 | [X:[1.3552], M:[0.7731, 0.7731], q:[0.6667, 0.3443], qb:[0.4945, 0.5602], phi:[0.3224]] | [X:[[4]], M:[[-11], [-11]], q:[[0], [2]], qb:[[-1], [11]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{2}\phi_{1}^{3}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{6}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ | ${}\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}^{3}$ | 0 | 2*t^2.32 + t^2.52 + t^2.71 + t^2.9 + 2*t^3.48 + t^4.07 + 2*t^4.45 + 3*t^4.64 + 2*t^4.65 + 2*t^4.84 + 3*t^5.03 + 2*t^5.22 + t^5.23 + 2*t^5.42 + t^5.43 + 3*t^5.61 + 4*t^5.8 + t^5.81 + t^6.2 + 4*t^6.39 + 2*t^6.58 + 3*t^6.77 + 2*t^6.78 + 4*t^6.96 + 7*t^6.97 + 5*t^7.16 + 6*t^7.35 + 2*t^7.36 + 3*t^7.54 + 5*t^7.55 + 3*t^7.74 + 3*t^7.75 + 9*t^7.93 + 2*t^7.94 + 6*t^8.12 + 6*t^8.13 + t^8.14 - t^8.32 + 3*t^8.33 + 2*t^8.52 + t^8.53 + 7*t^8.7 + 8*t^8.9 + t^8.91 + t^8.9/y^2 - t^3.97/y - t^4.93/y - (2*t^6.29)/y - t^6.48/y - t^6.68/y - t^6.87/y - (2*t^7.25)/y - (2*t^7.45)/y + t^7.64/y + t^7.84/y + (2*t^8.03)/y + (2*t^8.22)/y + t^8.23/y - t^8.42/y - (2*t^8.61)/y + (2*t^8.8)/y - t^3.97*y - t^4.93*y - 2*t^6.29*y - t^6.48*y - t^6.68*y - t^6.87*y - 2*t^7.25*y - 2*t^7.45*y + t^7.64*y + t^7.84*y + 2*t^8.03*y + 2*t^8.22*y + t^8.23*y - t^8.42*y - 2*t^8.61*y + 2*t^8.8*y + t^8.9*y^2 | (2*t^2.32)/g1^11 + g1*t^2.52 + g1^13*t^2.71 + t^2.9/g1^6 + (2*t^3.48)/g1 + g1^4*t^4.07 + (2*t^4.45)/g1^3 + (3*t^4.64)/g1^22 + 2*g1^9*t^4.65 + (2*t^4.84)/g1^10 + 3*g1^2*t^5.03 + (2*t^5.22)/g1^17 + g1^14*t^5.23 + (2*t^5.42)/g1^5 + g1^26*t^5.43 + 3*g1^7*t^5.61 + (4*t^5.8)/g1^12 + g1^19*t^5.81 + g1^12*t^6.2 + (4*t^6.39)/g1^7 + 2*g1^5*t^6.58 + (3*t^6.77)/g1^14 + 2*g1^17*t^6.78 + (4*t^6.96)/g1^33 + (7*t^6.97)/g1^2 + (3*t^7.16)/g1^21 + 2*g1^10*t^7.16 + (6*t^7.35)/g1^9 + 2*g1^22*t^7.36 + (3*t^7.54)/g1^28 + 5*g1^3*t^7.55 + (3*t^7.74)/g1^16 + 3*g1^15*t^7.75 + (9*t^7.93)/g1^4 + 2*g1^27*t^7.94 + (6*t^8.12)/g1^23 + 6*g1^8*t^8.13 + g1^39*t^8.14 - t^8.32/g1^11 + 3*g1^20*t^8.33 + 2*g1*t^8.52 + g1^32*t^8.53 + (7*t^8.7)/g1^18 + (8*t^8.9)/g1^6 + g1^25*t^8.91 + t^8.9/(g1^6*y^2) - t^3.97/(g1^2*y) - t^4.93/(g1^4*y) - (2*t^6.29)/(g1^13*y) - t^6.48/(g1*y) - (g1^11*t^6.68)/y - t^6.87/(g1^8*y) - (2*t^7.25)/(g1^15*y) - (2*t^7.45)/(g1^3*y) + t^7.64/(g1^22*y) + t^7.84/(g1^10*y) + (2*g1^2*t^8.03)/y + (2*t^8.22)/(g1^17*y) + (g1^14*t^8.23)/y - t^8.42/(g1^5*y) - (3*t^8.61)/(g1^24*y) + (g1^7*t^8.61)/y + (2*t^8.8)/(g1^12*y) - (t^3.97*y)/g1^2 - (t^4.93*y)/g1^4 - (2*t^6.29*y)/g1^13 - (t^6.48*y)/g1 - g1^11*t^6.68*y - (t^6.87*y)/g1^8 - (2*t^7.25*y)/g1^15 - (2*t^7.45*y)/g1^3 + (t^7.64*y)/g1^22 + (t^7.84*y)/g1^10 + 2*g1^2*t^8.03*y + (2*t^8.22*y)/g1^17 + g1^14*t^8.23*y - (t^8.42*y)/g1^5 - (3*t^8.61*y)/g1^24 + g1^7*t^8.61*y + (2*t^8.8*y)/g1^12 + (t^8.9*y^2)/g1^6 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
60095 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ | 1.4 | 1.5947 | 0.8779 | [X:[1.3491], M:[0.79], q:[0.6667, 0.3412], qb:[0.4961, 0.5434], phi:[0.3254]] | t^2.37 + t^2.51 + t^2.65 + t^2.93 + 2*t^3.49 + t^3.63 + t^4.05 + 2*t^4.46 + 2*t^4.61 + t^4.74 + t^4.88 + 2*t^5.02 + t^5.17 + t^5.3 + t^5.31 + 2*t^5.44 + 3*t^5.58 + t^5.72 + 2*t^5.86 + t^6. - t^3.98/y - t^4.95/y - t^3.98*y - t^4.95*y | detail |