Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
61025 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}M_{3}$ 1.4548 1.6414 0.8863 [X:[1.3431], M:[1.0147, 0.956, 0.9853], q:[0.5296, 0.4855], qb:[0.5145, 0.4998], phi:[0.3284]] [X:[[0, 2]], M:[[0, 3], [0, -9], [0, -3]], q:[[-1, 6], [-1, -3]], qb:[[1, 3], [1, 0]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ ${}$ -3 t^2.87 + 2*t^2.96 + t^3. + t^3.09 + t^3.94 + t^3.99 + t^4.03 + t^4.07 + t^4.12 + t^4.93 + t^4.97 + t^5.06 + t^5.1 + t^5.49 + t^5.53 + t^5.57 + t^5.62 + t^5.74 + 2*t^5.82 + 3*t^5.91 + 2*t^5.96 - 3*t^6. + t^6.04 + t^6.09 - t^6.13 + t^6.18 + t^6.47 + t^6.51 + t^6.56 + t^6.6 + t^6.81 + 3*t^6.9 + 3*t^6.94 + t^6.99 + 3*t^7.03 + 4*t^7.07 + t^7.12 + t^7.16 + t^7.21 + t^7.33 + t^7.46 + t^7.54 - t^7.55 + t^7.59 + t^7.72 + t^7.79 + 3*t^7.88 + 4*t^7.93 + t^7.97 + 3*t^8.01 + 6*t^8.06 + t^8.1 + 2*t^8.15 + 2*t^8.19 + t^8.23 - t^8.4 + t^8.44 + t^8.48 - t^8.57 + 3*t^8.58 + t^8.6 + 2*t^8.69 + t^8.71 + 3*t^8.78 + 2*t^8.87 + 5*t^8.91 - 5*t^8.96 + t^8.96/y^2 - t^3.99/y - t^4.97/y - t^6.85/y - (2*t^6.94)/y - t^6.99/y - t^7.07/y - t^7.84/y - (2*t^7.93)/y - t^7.97/y - t^8.06/y + (2*t^8.82)/y + t^8.87/y + (2*t^8.96)/y - t^3.99*y - t^4.97*y - t^6.85*y - 2*t^6.94*y - t^6.99*y - t^7.07*y - t^7.84*y - 2*t^7.93*y - t^7.97*y - t^8.06*y + 2*t^8.82*y + t^8.87*y + 2*t^8.96*y + t^8.96*y^2 t^2.87/g2^9 + (2*t^2.96)/g2^3 + t^3. + g2^6*t^3.09 + t^3.94/g2^4 + t^3.99/g2 + g2^2*t^4.03 + g2^5*t^4.07 + g2^8*t^4.12 + t^4.93/g2^5 + t^4.97/g2^2 + g2^4*t^5.06 + g2^7*t^5.1 + t^5.49/(g1^3*g2) + g1^3*g2^2*t^5.53 + g1^3*g2^5*t^5.57 + (g2^8*t^5.62)/g1^3 + t^5.74/g2^18 + (2*t^5.82)/g2^12 + (3*t^5.91)/g2^6 + (2*t^5.96)/g2^3 - 3*t^6. + g2^3*t^6.04 + g2^6*t^6.09 - g2^9*t^6.13 + g2^12*t^6.18 + t^6.47/(g1^3*g2^2) + g1^3*g2*t^6.51 + g1^3*g2^4*t^6.56 + (g2^7*t^6.6)/g1^3 + t^6.81/g2^13 + (3*t^6.9)/g2^7 + (3*t^6.94)/g2^4 + t^6.99/g2 + 3*g2^2*t^7.03 + 4*g2^5*t^7.07 + g2^8*t^7.12 + g2^11*t^7.16 + g2^14*t^7.21 + t^7.33/(g1^3*g2^12) + t^7.46/(g1^3*g2^3) - t^7.5/g1^3 + g1^3*t^7.5 + g1^3*g2^3*t^7.54 - (g2^3*t^7.55)/g1^3 + (g2^6*t^7.59)/g1^3 + (g2^15*t^7.72)/g1^3 + t^7.79/g2^14 + (3*t^7.88)/g2^8 + (4*t^7.93)/g2^5 + t^7.97/g2^2 + 3*g2*t^8.01 + 6*g2^4*t^8.06 + g2^7*t^8.1 + 2*g2^10*t^8.15 + 2*g2^13*t^8.19 + g2^16*t^8.23 - t^8.4/(g1^3*g2^7) + (2*t^8.44)/(g1^3*g2^4) - (g1^3*t^8.44)/g2^4 + (g1^3*t^8.48)/g2 - (2*g2^2*t^8.53)/g1^3 + 2*g1^3*g2^2*t^8.53 - g1^3*g2^5*t^8.57 + (3*g2^5*t^8.58)/g1^3 + t^8.6/g2^27 - (g2^11*t^8.66)/g1^3 + g1^3*g2^11*t^8.66 + (2*t^8.69)/g2^21 + (g2^14*t^8.71)/g1^3 + (3*t^8.78)/g2^15 + (2*t^8.87)/g2^9 + (5*t^8.91)/g2^6 - (5*t^8.96)/g2^3 + t^8.96/(g2^3*y^2) - t^3.99/(g2*y) - t^4.97/(g2^2*y) - t^6.85/(g2^10*y) - (2*t^6.94)/(g2^4*y) - t^6.99/(g2*y) - (g2^5*t^7.07)/y - t^7.84/(g2^11*y) - (2*t^7.93)/(g2^5*y) - t^7.97/(g2^2*y) - (g2^4*t^8.06)/y + (2*t^8.82)/(g2^12*y) + t^8.87/(g2^9*y) + (2*t^8.96)/(g2^3*y) - (t^3.99*y)/g2 - (t^4.97*y)/g2^2 - (t^6.85*y)/g2^10 - (2*t^6.94*y)/g2^4 - (t^6.99*y)/g2 - g2^5*t^7.07*y - (t^7.84*y)/g2^11 - (2*t^7.93*y)/g2^5 - (t^7.97*y)/g2^2 - g2^4*t^8.06*y + (2*t^8.82*y)/g2^12 + (t^8.87*y)/g2^9 + (2*t^8.96*y)/g2^3 + (t^8.96*y^2)/g2^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
59407 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ 1.4537 1.6401 0.8864 [X:[1.3392], M:[1.0088, 0.9736], q:[0.5177, 0.4913], qb:[0.5087, 0.4999], phi:[0.3304]] t^2.92 + t^2.97 + t^3. + t^3.03 + t^3.05 + t^3.96 + t^3.99 + t^4.02 + t^4.04 + t^4.07 + t^4.96 + t^4.98 + t^5.04 + t^5.06 + t^5.49 + t^5.52 + t^5.54 + t^5.57 + t^5.84 + t^5.89 + 2*t^5.95 + t^5.97 - 2*t^6. - t^3.99/y - t^4.98/y - t^3.99*y - t^4.98*y detail