Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
60991 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ | 1.3387 | 1.5657 | 0.855 | [X:[], M:[0.8982, 1.142], q:[0.5031, 0.6266], qb:[0.4352, 0.2315], phi:[0.3673]] | [X:[], M:[[3], [-14]], q:[[-5], [11]], qb:[[-3], [3]], phi:[[-1]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$, ${ }\phi_{1}^{5}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$ | ${2}\phi_{1}^{3}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}\tilde{q}_{2}^{3}$ | 2 | 2*t^2.2 + t^2.69 + t^2.81 + t^3.19 + t^3.31 + t^3.43 + t^3.68 + t^3.8 + t^3.92 + t^4.29 + 5*t^4.41 + t^4.78 + 3*t^4.9 + 3*t^5.02 + 4*t^5.39 + 4*t^5.51 + 2*t^5.63 + 3*t^5.88 + 2*t^6. + 3*t^6.12 + t^6.24 + 2*t^6.37 + 3*t^6.49 + 11*t^6.61 + t^6.73 + t^6.85 + t^6.86 + 4*t^6.98 + 8*t^7.1 + 8*t^7.22 + t^7.34 + t^7.35 + 2*t^7.47 + 9*t^7.59 + 9*t^7.71 + 6*t^7.83 + 2*t^7.96 + 7*t^8.08 + 7*t^8.2 + 8*t^8.32 + 3*t^8.44 + t^8.45 + 7*t^8.57 + 6*t^8.69 + 18*t^8.81 + 5*t^8.94 - t^4.1/y - t^5.2/y - (2*t^6.31)/y - t^6.8/y - t^6.92/y - t^7.29/y - t^7.41/y - t^7.53/y + (2*t^7.9)/y + t^8.02/y + t^8.39/y - t^8.51/y + t^8.63/y + (2*t^8.88)/y - t^4.1*y - t^5.2*y - 2*t^6.31*y - t^6.8*y - t^6.92*y - t^7.29*y - t^7.41*y - t^7.53*y + 2*t^7.9*y + t^8.02*y + t^8.39*y - t^8.51*y + t^8.63*y + 2*t^8.88*y | (2*t^2.2)/g1^2 + g1^3*t^2.69 + t^2.81/g1^8 + g1^8*t^3.19 + t^3.31/g1^3 + t^3.43/g1^14 + g1^13*t^3.68 + g1^2*t^3.8 + t^3.92/g1^9 + g1^7*t^4.29 + (5*t^4.41)/g1^4 + g1^12*t^4.78 + 3*g1*t^4.9 + (3*t^5.02)/g1^10 + 4*g1^6*t^5.39 + (4*t^5.51)/g1^5 + (2*t^5.63)/g1^16 + 3*g1^11*t^5.88 + 2*t^6. + (3*t^6.12)/g1^11 + t^6.24/g1^22 + 2*g1^16*t^6.37 + 3*g1^5*t^6.49 + (11*t^6.61)/g1^6 + t^6.73/g1^17 + t^6.85/g1^28 + g1^21*t^6.86 + 4*g1^10*t^6.98 + (8*t^7.1)/g1 + (8*t^7.22)/g1^12 + t^7.34/g1^23 + g1^26*t^7.35 + 2*g1^15*t^7.47 + 9*g1^4*t^7.59 + (9*t^7.71)/g1^7 + (6*t^7.83)/g1^18 + 2*g1^20*t^7.96 + 7*g1^9*t^8.08 + (7*t^8.2)/g1^2 + (8*t^8.32)/g1^13 + (3*t^8.44)/g1^24 + g1^25*t^8.45 + 7*g1^14*t^8.57 + 6*g1^3*t^8.69 + (18*t^8.81)/g1^8 + (4*t^8.94)/g1^19 + g1^30*t^8.94 - t^4.1/(g1*y) - t^5.2/(g1^2*y) - (2*t^6.31)/(g1^3*y) - (g1^2*t^6.8)/y - t^6.92/(g1^9*y) - (g1^7*t^7.29)/y - t^7.41/(g1^4*y) - t^7.53/(g1^15*y) + (2*g1*t^7.9)/y + t^8.02/(g1^10*y) + (g1^6*t^8.39)/y - t^8.51/(g1^5*y) + t^8.63/(g1^16*y) + (2*g1^11*t^8.88)/y - (t^4.1*y)/g1 - (t^5.2*y)/g1^2 - (2*t^6.31*y)/g1^3 - g1^2*t^6.8*y - (t^6.92*y)/g1^9 - g1^7*t^7.29*y - (t^7.41*y)/g1^4 - (t^7.53*y)/g1^15 + 2*g1*t^7.9*y + (t^8.02*y)/g1^10 + g1^6*t^8.39*y - (t^8.51*y)/g1^5 + (t^8.63*y)/g1^16 + 2*g1^11*t^8.88*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
59499 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ | 1.3527 | 1.591 | 0.8502 | [X:[], M:[0.8895], q:[0.5175, 0.5947], qb:[0.4439, 0.2228], phi:[0.3702]] | 2*t^2.22 + t^2.45 + t^2.67 + t^2.88 + t^3.12 + t^3.33 + t^3.56 + t^3.78 + t^3.99 + t^4.23 + 5*t^4.44 + 3*t^4.67 + 3*t^4.89 + t^4.91 + 3*t^5.11 + t^5.12 + 5*t^5.34 + 4*t^5.55 + t^5.57 + 4*t^5.78 + 2*t^6. - t^4.11/y - t^5.22/y - t^4.11*y - t^5.22*y | detail |