Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
60989 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ + ${ }M_{3}\phi_{1}^{2}q_{2}\tilde{q}_{2}$ 1.2724 1.5118 0.8416 [X:[1.4652], M:[0.9011, 0.7326, 0.7326], q:[0.746, 0.2112], qb:[0.5214, 0.3236], phi:[0.3663]] [X:[[0, 4]], M:[[0, -3], [0, 2], [0, 2]], q:[[-1, -8], [-1, -4]], qb:[[1, 6], [1, 0]], phi:[[0, 1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}^{3}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$ ${}M_{1}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ -1 4*t^2.2 + 2*t^2.7 + t^3.21 + t^3.3 + t^4.31 + 11*t^4.4 + 2*t^4.6 + 9*t^4.9 + 2*t^5.2 + 7*t^5.41 + 3*t^5.49 + 2*t^5.7 + 2*t^5.91 - t^6. + 2*t^6.21 + t^6.42 + 3*t^6.51 + 23*t^6.59 + 8*t^6.8 + 2*t^7.01 + 22*t^7.1 + 4*t^7.31 + 6*t^7.4 + t^7.52 + 22*t^7.6 + 6*t^7.69 + 2*t^7.81 + 8*t^7.9 + 12*t^8.11 - 7*t^8.2 + 8*t^8.41 + 8*t^8.62 - t^8.7 + 41*t^8.79 + 6*t^8.91 - t^4.1/y - t^5.2/y - (4*t^6.3)/y - t^6.8/y - t^7.31/y + (2*t^7.4)/y + (8*t^7.9)/y + (4*t^8.41)/y - (7*t^8.49)/y + (2*t^8.91)/y - t^4.1*y - t^5.2*y - 4*t^6.3*y - t^6.8*y - t^7.31*y + 2*t^7.4*y + 8*t^7.9*y + 4*t^8.41*y - 7*t^8.49*y + 2*t^8.91*y 4*g2^2*t^2.2 + (2*t^2.7)/g2^3 + t^3.21/g2^8 + g2^3*t^3.3 + t^4.31/g2^7 + 11*g2^4*t^4.4 + t^4.6/(g1^3*g2^15) + g1^3*g2^7*t^4.6 + (9*t^4.9)/g2 + t^5.2/(g1^3*g2^9) + g1^3*g2^13*t^5.2 + (7*t^5.41)/g2^6 + 3*g2^5*t^5.49 + t^5.7/(g1^3*g2^14) + g1^3*g2^8*t^5.7 + (2*t^5.91)/g2^11 - t^6. + t^6.21/(g1^3*g2^19) + g1^3*g2^3*t^6.21 + t^6.42/g2^16 + (3*t^6.51)/g2^5 + 23*g2^6*t^6.59 + (4*t^6.8)/(g1^3*g2^13) + 4*g1^3*g2^9*t^6.8 + (2*t^7.01)/g2^10 + 22*g2*t^7.1 + (2*t^7.31)/(g1^3*g2^18) + 2*g1^3*g2^4*t^7.31 + (3*t^7.4)/(g1^3*g2^7) + 3*g1^3*g2^15*t^7.4 + t^7.52/g2^15 + (22*t^7.6)/g2^4 + 6*g2^7*t^7.69 + t^7.81/(g1^3*g2^23) + (g1^3*t^7.81)/g2 + (4*t^7.9)/(g1^3*g2^12) + 4*g1^3*g2^10*t^7.9 + (12*t^8.11)/g2^9 - 7*g2^2*t^8.2 + (4*t^8.41)/(g1^3*g2^17) + 4*g1^3*g2^5*t^8.41 + (8*t^8.62)/g2^14 - t^8.7/g2^3 + 41*g2^8*t^8.79 + 3*g1^3*t^8.91 + (3*t^8.91)/(g1^3*g2^22) - (g2*t^4.1)/y - (g2^2*t^5.2)/y - (4*g2^3*t^6.3)/y - t^6.8/(g2^2*y) - t^7.31/(g2^7*y) + (2*g2^4*t^7.4)/y + (8*t^7.9)/(g2*y) + (4*t^8.41)/(g2^6*y) - (7*g2^5*t^8.49)/y + (2*t^8.91)/(g2^11*y) - g2*t^4.1*y - g2^2*t^5.2*y - 4*g2^3*t^6.3*y - (t^6.8*y)/g2^2 - (t^7.31*y)/g2^7 + 2*g2^4*t^7.4*y + (8*t^7.9*y)/g2 + (4*t^8.41*y)/g2^6 - 7*g2^5*t^8.49*y + (2*t^8.91*y)/g2^11


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
58875 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ 1.2527 1.4758 0.8488 [X:[1.4684], M:[0.8987, 0.7342], q:[0.7425, 0.211], qb:[0.5232, 0.3206], phi:[0.3671]] 3*t^2.2 + 2*t^2.7 + t^3.19 + t^3.3 + t^3.8 + t^4.29 + 7*t^4.41 + 2*t^4.59 + 7*t^4.9 + 2*t^5.2 + 6*t^5.39 + 2*t^5.51 + 2*t^5.7 + 2*t^5.89 + 2*t^6. - t^4.1/y - t^5.2/y - t^4.1*y - t^5.2*y detail