Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
60973 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ 1.3616 1.6421 0.8292 [X:[], M:[0.7133, 0.8], q:[0.5911, 0.4178], qb:[0.2956, 0.2956], phi:[0.4]] [X:[], M:[[-3], [0]], q:[[2], [-4]], qb:[[1], [1]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ ${}\phi_{1}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ 2}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}^{3}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ 2}\phi_{1}q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}^{3}$ 7 3*t^2.14 + 2*t^2.4 + 2*t^2.66 + 2*t^3.34 + 3*t^3.86 + 6*t^4.28 + 8*t^4.54 + 9*t^4.8 + 8*t^5.06 + 3*t^5.32 + 6*t^5.48 + 4*t^5.74 + 7*t^6. + 10*t^6.26 + 10*t^6.42 + 4*t^6.52 + 21*t^6.68 + 23*t^6.94 + 28*t^7.2 + t^7.36 + 19*t^7.46 + 12*t^7.62 + 14*t^7.72 + 16*t^7.88 + 4*t^7.98 + 14*t^8.14 + 28*t^8.4 + 15*t^8.56 + 15*t^8.66 + 39*t^8.82 + 20*t^8.92 - t^4.2/y - t^5.4/y - (3*t^6.34)/y - (2*t^6.6)/y - (2*t^6.86)/y + (3*t^7.28)/y + (3*t^7.54)/y + (6*t^7.8)/y + (3*t^8.06)/y + t^8.32/y - (4*t^8.74)/y - t^4.2*y - t^5.4*y - 3*t^6.34*y - 2*t^6.6*y - 2*t^6.86*y + 3*t^7.28*y + 3*t^7.54*y + 6*t^7.8*y + 3*t^8.06*y + t^8.32*y - 4*t^8.74*y (3*t^2.14)/g1^3 + 2*t^2.4 + 2*g1^3*t^2.66 + (2*t^3.34)/g1^3 + 3*g1^3*t^3.86 + (6*t^4.28)/g1^6 + (8*t^4.54)/g1^3 + 9*t^4.8 + 8*g1^3*t^5.06 + 3*g1^6*t^5.32 + (6*t^5.48)/g1^6 + (4*t^5.74)/g1^3 + 7*t^6. + 10*g1^3*t^6.26 + (10*t^6.42)/g1^9 + 4*g1^6*t^6.52 + (21*t^6.68)/g1^6 + (23*t^6.94)/g1^3 + 28*t^7.2 + t^7.36/g1^12 + 19*g1^3*t^7.46 + (12*t^7.62)/g1^9 + 14*g1^6*t^7.72 + (16*t^7.88)/g1^6 + 4*g1^9*t^7.98 + (14*t^8.14)/g1^3 + 28*t^8.4 + (15*t^8.56)/g1^12 + 15*g1^3*t^8.66 + (39*t^8.82)/g1^9 + 20*g1^6*t^8.92 - t^4.2/y - t^5.4/y - (3*t^6.34)/(g1^3*y) - (2*t^6.6)/y - (2*g1^3*t^6.86)/y + (3*t^7.28)/(g1^6*y) + (3*t^7.54)/(g1^3*y) + (6*t^7.8)/y + (3*g1^3*t^8.06)/y + (g1^6*t^8.32)/y - (4*t^8.74)/(g1^3*y) - t^4.2*y - t^5.4*y - (3*t^6.34*y)/g1^3 - 2*t^6.6*y - 2*g1^3*t^6.86*y + (3*t^7.28*y)/g1^6 + (3*t^7.54*y)/g1^3 + 6*t^7.8*y + 3*g1^3*t^8.06*y + g1^6*t^8.32*y - (4*t^8.74*y)/g1^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
58385 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$ 1.4433 1.7189 0.8397 [X:[], M:[0.7907, 0.8], q:[0.4094, 0.3907], qb:[0.4, 0.4], phi:[0.4]] 3*t^2.37 + 2*t^2.4 + 2*t^2.43 + 2*t^3.57 + t^3.63 + 6*t^4.74 + 9*t^4.77 + 11*t^4.8 + 7*t^4.83 + 3*t^4.86 + 5*t^5.94 + 5*t^5.97 + 3*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail