Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
60969 | SU3adj1nf2 | ${}\phi_{1}^{5}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}^{3}$ | 1.3314 | 1.5874 | 0.8388 | [X:[], M:[1.1048, 0.8], q:[0.5968, 0.4063], qb:[0.2984, 0.2984], phi:[0.4]] | [X:[], M:[[-3], [0]], q:[[2], [-4]], qb:[[1], [1]], phi:[[0]]] | 1 | {a: 195719/147000, c: 29168/18375, M1: 116/105, M2: 4/5, q1: 188/315, q2: 128/315, qb1: 94/315, qb2: 94/315, phi1: 2/5} |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ | ${}\phi_{1}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ 3}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}^{3}\tilde{q}_{2}$, ${ 2}\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$ | 5 | 2*t^2.11 + 2*t^2.4 + t^2.69 + 3*t^3.31 + 4*t^3.89 + 3*t^4.23 + 6*t^4.51 + 5*t^4.8 + 6*t^5.09 + t^5.37 + 6*t^5.43 + 6*t^5.71 + 5*t^6. + 12*t^6.29 + 4*t^6.34 + 2*t^6.57 + 16*t^6.63 + 11*t^6.91 + 20*t^7.2 + t^7.26 + 9*t^7.49 + 9*t^7.54 + 10*t^7.77 + 18*t^7.83 + t^8.06 + 11*t^8.11 + 26*t^8.4 + 5*t^8.46 + 13*t^8.69 + 24*t^8.74 + 16*t^8.97 - t^4.2/y - t^5.4/y - (2*t^6.31)/y - (2*t^6.6)/y - t^6.89/y + t^7.23/y + t^7.51/y + (2*t^7.8)/y + t^8.09/y + (3*t^8.43)/y - t^8.71/y - t^4.2*y - t^5.4*y - 2*t^6.31*y - 2*t^6.6*y - t^6.89*y + t^7.23*y + t^7.51*y + 2*t^7.8*y + t^8.09*y + 3*t^8.43*y - t^8.71*y | (2*t^2.11)/g1^3 + 2*t^2.4 + g1^3*t^2.69 + (3*t^3.31)/g1^3 + 4*g1^3*t^3.89 + (3*t^4.23)/g1^6 + (6*t^4.51)/g1^3 + 5*t^4.8 + 6*g1^3*t^5.09 + g1^6*t^5.37 + (6*t^5.43)/g1^6 + (6*t^5.71)/g1^3 + 5*t^6. + 12*g1^3*t^6.29 + (4*t^6.34)/g1^9 + 2*g1^6*t^6.57 + (16*t^6.63)/g1^6 + (11*t^6.91)/g1^3 + 20*t^7.2 + t^7.26/g1^12 + 9*g1^3*t^7.49 + (9*t^7.54)/g1^9 + 10*g1^6*t^7.77 + (18*t^7.83)/g1^6 + g1^9*t^8.06 + (11*t^8.11)/g1^3 + 26*t^8.4 + (5*t^8.46)/g1^12 + 13*g1^3*t^8.69 + (24*t^8.74)/g1^9 + 16*g1^6*t^8.97 - t^4.2/y - t^5.4/y - (2*t^6.31)/(g1^3*y) - (2*t^6.6)/y - (g1^3*t^6.89)/y + t^7.23/(g1^6*y) + t^7.51/(g1^3*y) + (2*t^7.8)/y + (g1^3*t^8.09)/y + (3*t^8.43)/(g1^6*y) - t^8.71/(g1^3*y) - t^4.2*y - t^5.4*y - (2*t^6.31*y)/g1^3 - 2*t^6.6*y - g1^3*t^6.89*y + (t^7.23*y)/g1^6 + (t^7.51*y)/g1^3 + 2*t^7.8*y + g1^3*t^8.09*y + (3*t^8.43*y)/g1^6 - (t^8.71*y)/g1^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
58847 | SU3adj1nf2 | ${}\phi_{1}^{5}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ | 1.3319 | 1.5887 | 0.8384 | [X:[], M:[1.0922, 0.8], q:[0.597, 0.4059], qb:[0.3107, 0.2863], phi:[0.4]] | t^2.08 + t^2.15 + 2*t^2.4 + t^2.65 + 2*t^3.28 + t^3.35 + 2*t^3.85 + 2*t^3.92 + t^4.15 + t^4.23 + t^4.3 + 3*t^4.48 + 3*t^4.55 + t^4.73 + 4*t^4.8 + 4*t^5.05 + 2*t^5.12 + t^5.3 + 2*t^5.35 + 3*t^5.43 + t^5.5 + 4*t^5.68 + 2*t^5.75 + 3*t^5.93 + t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y | detail |