Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
60958 | SU3adj1nf2 | ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}^{3}$ | 1.413 | 1.6692 | 0.8465 | [X:[], M:[0.7613, 1.1779, 1.1613, 0.8], q:[0.4079, 0.3913], qb:[0.4307, 0.37], phi:[0.4]] | [X:[], M:[[1, 0, 1], [-1, -1, 0], [1, 0, 1], [0, 0, 0]], q:[[-1, -1, -1], [1, 0, 0]], qb:[[0, 1, 0], [0, 0, 1]], phi:[[0, 0, 0]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{4}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$ | ${}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$ | -3 | 2*t^2.28 + t^2.33 + 2*t^2.4 + 2*t^3.48 + 2*t^3.53 + t^3.67 + 3*t^4.57 + 2*t^4.62 + t^4.67 + 5*t^4.68 + t^4.71 + 3*t^4.73 + t^4.77 + 3*t^4.8 + t^4.82 + t^4.87 + t^4.89 + t^4.92 + 4*t^5.77 + 5*t^5.82 + 2*t^5.87 + 4*t^5.88 + t^5.91 + 4*t^5.93 + t^5.95 + t^5.97 - 3*t^6. + t^6.02 - t^6.05 + 2*t^6.07 + t^6.09 - t^6.18 + 4*t^6.85 + 3*t^6.9 + t^6.93 + 2*t^6.95 + 11*t^6.97 + 3*t^7. + 10*t^7.02 + t^7.05 + 2*t^7.06 + 6*t^7.07 + 7*t^7.08 + 5*t^7.11 + t^7.12 + 4*t^7.13 + 3*t^7.15 + t^7.16 + 3*t^7.17 + t^7.18 + 5*t^7.2 + 3*t^7.22 + 2*t^7.27 + 2*t^7.29 + t^7.32 + t^7.33 - t^7.38 + t^7.48 + 6*t^8.05 + 8*t^8.1 + 5*t^8.15 + 10*t^8.17 + 5*t^8.2 + 13*t^8.22 + t^8.23 + 2*t^8.25 + 3*t^8.26 + 6*t^8.27 - 2*t^8.28 + 5*t^8.31 + 4*t^8.35 + 2*t^8.36 + t^8.37 + t^8.38 - 4*t^8.4 + t^8.42 - t^8.45 - t^8.49 - 2*t^8.52 + t^8.53 - t^8.54 - 2*t^8.58 - t^8.61 - t^4.2/y - t^5.4/y - (2*t^6.48)/y - t^6.53/y - (2*t^6.6)/y + t^7.57/y + (2*t^7.62)/y + t^7.68/y + t^7.92/y + t^8.77/y + (4*t^8.82)/y + t^8.87/y - (2*t^8.88)/y + (2*t^8.95)/y - t^4.2*y - t^5.4*y - 2*t^6.48*y - t^6.53*y - 2*t^6.6*y + t^7.57*y + 2*t^7.62*y + t^7.68*y + t^7.92*y + t^8.77*y + 4*t^8.82*y + t^8.87*y - 2*t^8.88*y + 2*t^8.95*y | 2*g1*g3*t^2.28 + t^2.33/(g1*g2) + 2*t^2.4 + 2*g1*g3*t^3.48 + (2*t^3.53)/(g1*g2) + g1*g2*t^3.67 + 3*g1^2*g3^2*t^4.57 + (2*g3*t^4.62)/g2 + t^4.67/(g1^2*g2^2) + 5*g1*g3*t^4.68 + g2*g3^2*t^4.71 + (3*t^4.73)/(g1*g2) + (g1*t^4.77)/(g2*g3) + 3*t^4.8 + t^4.82/(g1*g2^2*g3^2) + g1*g2*t^4.87 + g2^2*g3*t^4.89 + t^4.92/(g1*g3) + 4*g1^2*g3^2*t^5.77 + (5*g3*t^5.82)/g2 + (2*t^5.87)/(g1^2*g2^2) + 4*g1*g3*t^5.88 + g2*g3^2*t^5.91 + (4*t^5.93)/(g1*g2) + g1^2*g2*g3*t^5.95 + (g1*t^5.97)/(g2*g3) - 3*t^6. + t^6.02/(g1*g2^2*g3^2) - t^6.05/(g1^2*g2*g3) + 2*g1*g2*t^6.07 + g2^2*g3*t^6.09 - (g2*t^6.18)/g3 + 4*g1^3*g3^3*t^6.85 + (3*g1*g3^2*t^6.9)/g2 + g3^3*t^6.93 + (2*g3*t^6.95)/(g1*g2^2) + 11*g1^2*g3^2*t^6.97 + t^7./(g1^3*g2^3) + 2*g1*g2*g3^3*t^7. + (10*g3*t^7.02)/g2 + (g3^2*t^7.05)/g1 + (2*g1^2*t^7.06)/g2 + (6*t^7.07)/(g1^2*g2^2) + 7*g1*g3*t^7.08 + (2*t^7.11)/(g2^2*g3) + 3*g2*g3^2*t^7.11 + g1^3*t^7.12 + (4*t^7.13)/(g1*g2) + 3*g1^2*g2*g3*t^7.15 + t^7.16/(g1^2*g2^3*g3^2) + (3*g1*t^7.17)/(g2*g3) + g1*g2^2*g3^2*t^7.18 + 5*t^7.2 + (3*t^7.22)/(g1*g2^2*g3^2) + g1*g2*t^7.27 + t^7.27/(g1^3*g2^3*g3^3) - t^7.29/(g2*g3^2) + 3*g2^2*g3*t^7.29 + t^7.32/(g1*g3) + g1^2*g2^2*t^7.33 - (g2*t^7.38)/g3 + g2^3*t^7.48 + 6*g1^3*g3^3*t^8.05 + (8*g1*g3^2*t^8.1)/g2 + (5*g3*t^8.15)/(g1*g2^2) + 10*g1^2*g3^2*t^8.17 + (2*t^8.2)/(g1^3*g2^3) + 3*g1*g2*g3^3*t^8.2 + (13*g3*t^8.22)/g2 + g1^3*g2*g3^2*t^8.23 + (2*g3^2*t^8.25)/g1 + (3*g1^2*t^8.26)/g2 + (6*t^8.27)/(g1^2*g2^2) - 2*g1*g3*t^8.28 + (4*t^8.31)/(g2^2*g3) + g2*g3^2*t^8.31 + 4*g1^2*g2*g3*t^8.35 + (2*t^8.36)/(g1^2*g2^3*g3^2) + (g1*t^8.37)/(g2*g3) - t^8.38/(g1^3*g2^2*g3) + 2*g1*g2^2*g3^2*t^8.38 - 4*t^8.4 + t^8.42/(g1*g2^2*g3^2) - t^8.45/(g1^2*g2*g3) - (2*t^8.49)/(g2*g3^2) + g2^2*g3*t^8.49 - (2*t^8.52)/(g1*g3) + g1^2*g2^2*t^8.53 - t^8.54/(g1^2*g2^2*g3^3) - (2*g2*t^8.58)/g3 - (g2^2*t^8.61)/g1 - t^4.2/y - t^5.4/y - (2*g1*g3*t^6.48)/y - t^6.53/(g1*g2*y) - (2*t^6.6)/y + (g1^2*g3^2*t^7.57)/y + (2*g3*t^7.62)/(g2*y) + (g1*g3*t^7.68)/y + t^7.92/(g1*g3*y) + (g1^2*g3^2*t^8.77)/y + (4*g3*t^8.82)/(g2*y) + t^8.87/(g1^2*g2^2*y) - (2*g1*g3*t^8.88)/y + (2*g1^2*g2*g3*t^8.95)/y - t^4.2*y - t^5.4*y - 2*g1*g3*t^6.48*y - (t^6.53*y)/(g1*g2) - 2*t^6.6*y + g1^2*g3^2*t^7.57*y + (2*g3*t^7.62*y)/g2 + g1*g3*t^7.68*y + (t^7.92*y)/(g1*g3) + g1^2*g3^2*t^8.77*y + (4*g3*t^8.82*y)/g2 + (t^8.87*y)/(g1^2*g2^2) - 2*g1*g3*t^8.88*y + 2*g1^2*g2*g3*t^8.95*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
58361 | SU3adj1nf2 | ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ | 1.3965 | 1.6402 | 0.8514 | [X:[], M:[0.7613, 1.1779, 1.1613], q:[0.4079, 0.3913], qb:[0.4307, 0.37], phi:[0.4]] | 2*t^2.28 + t^2.33 + t^2.4 + 2*t^3.48 + 2*t^3.53 + t^3.6 + t^3.67 + 3*t^4.57 + 2*t^4.62 + t^4.67 + 3*t^4.68 + t^4.71 + 2*t^4.73 + t^4.77 + t^4.8 + t^4.82 + t^4.87 + t^4.89 + t^4.92 + 4*t^5.77 + 5*t^5.82 + 2*t^5.87 + 4*t^5.88 + t^5.91 + 3*t^5.93 + t^5.95 + t^5.97 - 2*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y | detail |