Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
60947 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ | 1.4497 | 1.6405 | 0.8837 | [X:[1.3508], M:[0.8955, 0.9477], q:[0.5759, 0.5236], qb:[0.4241, 0.5287], phi:[0.3246]] | [X:[[6]], M:[[-36], [-18]], q:[[7], [-11]], qb:[[-7], [29]], phi:[[-3]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{6}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$ | ${}$ | -2 | t^2.69 + 2*t^2.84 + t^2.92 + t^3. + t^3.82 + t^3.97 + t^4.05 + t^4.13 + t^4.29 + t^4.79 + t^4.95 + 2*t^5.1 + t^5.26 + t^5.37 + t^5.42 + 2*t^5.53 + t^5.61 + 3*t^5.69 + 2*t^5.76 + 3*t^5.84 + t^5.92 - 2*t^6. + t^6.08 - t^6.16 - t^6.31 + t^6.39 + t^6.5 + 2*t^6.66 + 3*t^6.74 + 4*t^6.82 + 3*t^6.9 + 3*t^6.97 + 3*t^7.05 + t^7.13 + t^7.21 - t^7.29 + t^7.37 + t^7.48 + 4*t^7.63 + t^7.68 + 5*t^7.79 + t^7.87 + 6*t^7.95 + t^8.03 + t^8.06 + 5*t^8.1 + t^8.18 + 2*t^8.22 + 2*t^8.26 + t^8.29 + t^8.34 + 3*t^8.37 + t^8.42 + 2*t^8.45 + 4*t^8.53 + 4*t^8.61 + t^8.69 + 5*t^8.76 - 5*t^8.84 + 4*t^8.92 + t^8.92/y^2 - t^3.97/y - t^4.95/y - t^6.66/y - (2*t^6.82)/y - t^6.9/y - t^6.97/y - t^7.63/y - (2*t^7.79)/y - t^7.87/y - t^7.95/y + (2*t^8.53)/y + t^8.61/y + (2*t^8.69)/y + t^8.76/y + (2*t^8.84)/y - t^3.97*y - t^4.95*y - t^6.66*y - 2*t^6.82*y - t^6.9*y - t^6.97*y - t^7.63*y - 2*t^7.79*y - t^7.87*y - t^7.95*y + 2*t^8.53*y + t^8.61*y + 2*t^8.69*y + t^8.76*y + 2*t^8.84*y + t^8.92*y^2 | t^2.69/g1^36 + (2*t^2.84)/g1^18 + t^2.92/g1^9 + t^3. + t^3.82/g1^21 + t^3.97/g1^3 + g1^6*t^4.05 + g1^15*t^4.13 + g1^33*t^4.29 + t^4.79/g1^24 + t^4.95/g1^6 + 2*g1^12*t^5.1 + g1^30*t^5.26 + t^5.37/g1^72 + g1^48*t^5.42 + (2*t^5.53)/g1^54 + t^5.61/g1^45 + (3*t^5.69)/g1^36 + (2*t^5.76)/g1^27 + (3*t^5.84)/g1^18 + t^5.92/g1^9 - 2*t^6. + g1^9*t^6.08 - g1^18*t^6.16 - g1^36*t^6.31 + g1^45*t^6.39 + t^6.5/g1^57 + (2*t^6.66)/g1^39 + (3*t^6.74)/g1^30 + (4*t^6.82)/g1^21 + (3*t^6.9)/g1^12 + (3*t^6.97)/g1^3 + 3*g1^6*t^7.05 + g1^15*t^7.13 + g1^24*t^7.21 - g1^33*t^7.29 + g1^42*t^7.37 + t^7.48/g1^60 + (4*t^7.63)/g1^42 + g1^78*t^7.68 + (5*t^7.79)/g1^24 + t^7.87/g1^15 + (6*t^7.95)/g1^6 + g1^3*t^8.03 + t^8.06/g1^108 + 5*g1^12*t^8.1 + g1^21*t^8.18 + (2*t^8.22)/g1^90 + 2*g1^30*t^8.26 + t^8.29/g1^81 + g1^39*t^8.34 + (3*t^8.37)/g1^72 + g1^48*t^8.42 + (2*t^8.45)/g1^63 + (4*t^8.53)/g1^54 + (4*t^8.61)/g1^45 + t^8.69/g1^36 + (5*t^8.76)/g1^27 - (5*t^8.84)/g1^18 + (4*t^8.92)/g1^9 + t^8.92/(g1^9*y^2) - t^3.97/(g1^3*y) - t^4.95/(g1^6*y) - t^6.66/(g1^39*y) - (2*t^6.82)/(g1^21*y) - t^6.9/(g1^12*y) - t^6.97/(g1^3*y) - t^7.63/(g1^42*y) - (2*t^7.79)/(g1^24*y) - t^7.87/(g1^15*y) - t^7.95/(g1^6*y) + (2*t^8.53)/(g1^54*y) + t^8.61/(g1^45*y) + (2*t^8.69)/(g1^36*y) + t^8.76/(g1^27*y) + (2*t^8.84)/(g1^18*y) - (t^3.97*y)/g1^3 - (t^4.95*y)/g1^6 - (t^6.66*y)/g1^39 - (2*t^6.82*y)/g1^21 - (t^6.9*y)/g1^12 - (t^6.97*y)/g1^3 - (t^7.63*y)/g1^42 - (2*t^7.79*y)/g1^24 - (t^7.87*y)/g1^15 - (t^7.95*y)/g1^6 + (2*t^8.53*y)/g1^54 + (t^8.61*y)/g1^45 + (2*t^8.69*y)/g1^36 + (t^8.76*y)/g1^27 + (2*t^8.84*y)/g1^18 + (t^8.92*y^2)/g1^9 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
58085 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ | 1.4453 | 1.6328 | 0.8852 | [X:[1.3473], M:[0.9163], q:[0.5718, 0.53], qb:[0.4282, 0.5119], phi:[0.3264]] | t^2.75 + t^2.87 + t^2.94 + t^3. + t^3.13 + t^3.85 + t^3.98 + t^4.04 + t^4.1 + t^4.23 + t^4.83 + t^4.96 + 2*t^5.08 + t^5.21 + t^5.33 + t^5.5 + t^5.62 + t^5.69 + t^5.75 + t^5.81 + 3*t^5.87 + t^5.94 - t^6. - t^3.98/y - t^4.96/y - t^3.98*y - t^4.96*y | detail |