Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
60945 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ | 1.4673 | 1.6718 | 0.8776 | [X:[1.3518], M:[0.9168, 1.0277, 0.6714], q:[0.4983, 0.4661], qb:[0.5849, 0.5062], phi:[0.3241]] | [X:[[0, 4]], M:[[0, -18], [0, 6], [-3, -15]], q:[[1, 17], [-2, -6]], qb:[[-1, 1], [2, 0]], phi:[[0, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{3}$, ${ }M_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{6}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ | ${}$ | -2 | t^2.01 + t^2.75 + t^2.92 + t^3.01 + t^3.08 + t^3.15 + t^3.89 + t^4.03 + t^4.06 + t^4.13 + t^4.22 + t^4.76 + t^4.86 + t^4.93 + t^4.96 + t^5.03 + 2*t^5.1 + t^5.17 + t^5.19 + t^5.26 + t^5.36 + t^5.5 + t^5.67 + t^5.76 + 2*t^5.83 + t^5.9 + t^5.93 - 2*t^6. + t^6.03 + t^6.04 + 2*t^6.07 + t^6.14 + 2*t^6.17 + 2*t^6.24 + t^6.31 + t^6.33 + t^6.64 + t^6.78 + 2*t^6.81 + t^6.88 + t^6.9 + t^6.95 + 2*t^6.97 + 3*t^7.04 + 3*t^7.11 + 2*t^7.14 + t^7.18 + 3*t^7.21 + t^7.24 + 2*t^7.28 + 2*t^7.31 + t^7.37 + t^7.4 + t^7.47 + t^7.52 + t^7.61 + t^7.68 + t^7.71 + 2*t^7.78 + 2*t^7.85 + t^7.87 + t^7.92 + 2*t^7.94 + t^7.97 + t^8.01 + t^8.06 + 2*t^8.08 + 3*t^8.11 + t^8.15 + 4*t^8.18 + 4*t^8.25 + 3*t^8.28 + t^8.32 + 2*t^8.35 + t^8.37 + 2*t^8.42 + t^8.44 + t^8.51 + 2*t^8.58 - t^8.61 + t^8.65 + t^8.68 - t^8.75 + t^8.78 + t^8.79 + 2*t^8.82 + t^8.85 + t^8.89 + t^8.92 + t^8.94 + t^8.96 + 2*t^8.99 + t^8.92/y^2 - t^8.99/y^2 - t^3.97/y - t^4.94/y - t^5.99/y - t^6.72/y - t^6.89/y - t^6.96/y - t^6.99/y - t^7.06/y - t^7.13/y - t^7.69/y + t^7.76/y - t^7.86/y + t^7.93/y - t^8./y + t^8.17/y + t^8.67/y - t^8.74/y + t^8.76/y + t^8.9/y + t^8.93/y - t^8.97/y - t^3.97*y - t^4.94*y - t^5.99*y - t^6.72*y - t^6.89*y - t^6.96*y - t^6.99*y - t^7.06*y - t^7.13*y - t^7.69*y + t^7.76*y - t^7.86*y + t^7.93*y - t^8.*y + t^8.17*y + t^8.67*y - t^8.74*y + t^8.76*y + t^8.9*y + t^8.93*y - t^8.97*y + t^8.92*y^2 - t^8.99*y^2 | t^2.01/(g1^3*g2^15) + t^2.75/g2^18 + t^2.92/g2^6 + g1^3*g2^17*t^3.01 + g2^6*t^3.08 + t^3.15/(g1^3*g2^5) + t^3.89/g2^8 + t^4.03/(g1^6*g2^30) + g2^4*t^4.06 + t^4.13/(g1^3*g2^7) + g2^16*t^4.22 + t^4.76/(g1^3*g2^33) + t^4.86/g2^10 + t^4.93/(g1^3*g2^21) + g1^3*g2^13*t^4.96 + g2^2*t^5.03 + (2*t^5.1)/(g1^3*g2^9) + t^5.17/(g1^6*g2^20) + g2^14*t^5.19 + (g2^3*t^5.26)/g1^3 + g2^26*t^5.36 + t^5.5/g2^36 + t^5.67/g2^24 + (g1^3*t^5.76)/g2 + (2*t^5.83)/g2^12 + t^5.9/(g1^3*g2^23) + g1^3*g2^11*t^5.93 - 2*t^6. + g1^6*g2^34*t^6.03 + t^6.04/(g1^9*g2^45) + (2*t^6.07)/(g1^3*g2^11) + t^6.14/(g1^6*g2^22) + 2*g2^12*t^6.17 + (2*g2*t^6.24)/g1^3 + t^6.31/(g1^6*g2^10) + g2^24*t^6.33 + t^6.64/g2^26 + t^6.78/(g1^6*g2^48) + (2*t^6.81)/g2^14 + t^6.88/(g1^3*g2^25) + g1^3*g2^9*t^6.9 + t^6.95/(g1^6*g2^36) + (2*t^6.97)/g2^2 + (3*t^7.04)/(g1^3*g2^13) + (3*t^7.11)/(g1^6*g2^24) + 2*g2^10*t^7.14 + t^7.18/(g1^9*g2^35) + (3*t^7.21)/(g1^3*g2) + g1^3*g2^33*t^7.24 + (2*t^7.28)/(g1^6*g2^12) + 2*g2^22*t^7.31 + (g2^11*t^7.37)/g1^3 + g1^3*g2^45*t^7.4 + (g1^6*t^7.47)/g2^6 + t^7.52/(g1^3*g2^51) + t^7.61/g2^28 + t^7.68/(g1^3*g2^39) + (g1^3*t^7.71)/g2^5 + (2*t^7.78)/g2^16 + (2*t^7.85)/(g1^3*g2^27) + g1^3*g2^7*t^7.87 + t^7.92/(g1^6*g2^38) + (2*t^7.94)/g2^4 + g1^6*g2^30*t^7.97 + t^8.01/(g1^3*g2^15) + t^8.06/(g1^12*g2^60) + (2*t^8.08)/(g1^6*g2^26) + 3*g2^8*t^8.11 + t^8.15/(g1^9*g2^37) + (4*t^8.18)/(g1^3*g2^3) + t^8.25/g2^54 + (3*t^8.25)/(g1^6*g2^14) + 3*g2^20*t^8.28 + t^8.32/(g1^9*g2^25) + (2*g2^9*t^8.35)/g1^3 + g1^3*g2^43*t^8.37 + t^8.42/g2^42 + t^8.42/(g1^6*g2^2) + g2^32*t^8.44 + (g2^21*t^8.51)/g1^3 + (2*t^8.58)/g2^30 - g1^6*g2^4*t^8.61 + t^8.65/(g1^3*g2^41) + (g1^3*t^8.68)/g2^7 - t^8.75/g2^18 + g1^6*g2^16*t^8.78 + t^8.79/(g1^9*g2^63) + (2*t^8.82)/(g1^3*g2^29) + g1^3*g2^5*t^8.85 + t^8.89/(g1^6*g2^40) + t^8.92/g2^6 + g1^6*g2^28*t^8.94 + t^8.96/(g1^9*g2^51) + (2*t^8.99)/(g1^3*g2^17) + t^8.92/(g2^6*y^2) - t^8.99/(g1^3*g2^17*y^2) - t^3.97/(g2^2*y) - t^4.94/(g2^4*y) - t^5.99/(g1^3*g2^17*y) - t^6.72/(g2^20*y) - t^6.89/(g2^8*y) - t^6.96/(g1^3*g2^19*y) - (g1^3*g2^15*t^6.99)/y - (g2^4*t^7.06)/y - t^7.13/(g1^3*g2^7*y) - t^7.69/(g2^22*y) + t^7.76/(g1^3*g2^33*y) - t^7.86/(g2^10*y) + t^7.93/(g1^3*g2^21*y) - t^8./(g1^6*g2^32*y) + t^8.17/(g1^6*g2^20*y) + t^8.67/(g2^24*y) - t^8.74/(g1^3*g2^35*y) + (g1^3*t^8.76)/(g2*y) + t^8.9/(g1^3*g2^23*y) + (g1^3*g2^11*t^8.93)/y - t^8.97/(g1^6*g2^34*y) - (t^3.97*y)/g2^2 - (t^4.94*y)/g2^4 - (t^5.99*y)/(g1^3*g2^17) - (t^6.72*y)/g2^20 - (t^6.89*y)/g2^8 - (t^6.96*y)/(g1^3*g2^19) - g1^3*g2^15*t^6.99*y - g2^4*t^7.06*y - (t^7.13*y)/(g1^3*g2^7) - (t^7.69*y)/g2^22 + (t^7.76*y)/(g1^3*g2^33) - (t^7.86*y)/g2^10 + (t^7.93*y)/(g1^3*g2^21) - (t^8.*y)/(g1^6*g2^32) + (t^8.17*y)/(g1^6*g2^20) + (t^8.67*y)/g2^24 - (t^8.74*y)/(g1^3*g2^35) + (g1^3*t^8.76*y)/g2 + (t^8.9*y)/(g1^3*g2^23) + g1^3*g2^11*t^8.93*y - (t^8.97*y)/(g1^6*g2^34) + (t^8.92*y^2)/g2^6 - (t^8.99*y^2)/(g1^3*g2^17) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57977 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ | 1.4464 | 1.6305 | 0.8871 | [X:[1.3517], M:[0.9172, 1.0276], q:[0.4977, 0.4667], qb:[0.5851, 0.5057], phi:[0.3241]] | t^2.75 + t^2.92 + t^3.01 + t^3.08 + t^3.16 + t^3.89 + t^3.98 + t^4.06 + t^4.13 + t^4.22 + t^4.86 + t^4.95 + t^5.1 + t^5.19 + t^5.27 + t^5.36 + t^5.5 + t^5.67 + t^5.76 + 2*t^5.83 + t^5.93 - 2*t^6. - t^3.97/y - t^4.94/y - t^3.97*y - t^4.94*y | detail |