Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
60939 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{2}M_{3}$ 1.3286 1.5131 0.8781 [X:[1.3658], M:[0.8541, 1.0486, 0.9514], q:[0.3982, 0.618], qb:[0.7477, 0.3333], phi:[0.3171]] [X:[[0, 2]], M:[[0, -9], [0, 3], [0, -3]], q:[[-1, 4], [-1, -3]], qb:[[1, 5], [1, 0]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }\phi_{1}^{3}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{1}M_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}\phi_{1}^{3}$, ${ }\phi_{1}^{6}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$ ${}M_{2}\phi_{1}^{3}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$ 0 t^2.19 + t^2.56 + 2*t^2.85 + t^3.15 + t^3.81 + 3*t^4.1 + 2*t^4.39 + t^4.76 + 3*t^5.05 + t^5.12 + 2*t^5.19 + t^5.34 + 2*t^5.42 + 3*t^5.71 + 2*t^5.85 + 2*t^6.15 + 3*t^6.29 + t^6.37 + 2*t^6.44 + 2*t^6.58 + 3*t^6.66 + 6*t^6.95 + 5*t^7.24 + t^7.32 + 2*t^7.39 + 2*t^7.53 + 3*t^7.61 + t^7.69 + 6*t^7.9 + 2*t^7.98 + 2*t^8.05 + 5*t^8.19 + 3*t^8.27 + 2*t^8.34 + 2*t^8.42 + 5*t^8.49 + 2*t^8.56 + 2*t^8.63 + 4*t^8.71 + 3*t^8.78 + t^8.85 + t^8.93 + t^8.85/y^2 - t^3.95/y - t^4.9/y - t^6.15/y - t^6.51/y - (2*t^6.81)/y - t^7.1/y - t^7.47/y - t^7.76/y + (2*t^8.42)/y + t^8.71/y - t^3.95*y - t^4.9*y - t^6.15*y - t^6.51*y - 2*t^6.81*y - t^7.1*y - t^7.47*y - t^7.76*y + 2*t^8.42*y + t^8.71*y + t^8.85*y^2 g2^4*t^2.19 + t^2.56/g2^9 + (2*t^2.85)/g2^3 + g2^3*t^3.15 + t^3.81/g2^4 + 3*g2^2*t^4.1 + 2*g2^8*t^4.39 + t^4.76/g2^5 + 3*g2*t^5.05 + t^5.12/g2^18 + (g2^4*t^5.19)/g1^3 + g1^3*g2^4*t^5.19 + g2^7*t^5.34 + (2*t^5.42)/g2^12 + (3*t^5.71)/g2^6 + t^5.85/(g1^3*g2^3) + (g1^3*t^5.85)/g2^3 + (g2^3*t^6.15)/g1^3 + g1^3*g2^3*t^6.15 + 3*g2^6*t^6.29 + t^6.37/g2^13 + (g2^9*t^6.44)/g1^3 + g1^3*g2^9*t^6.44 + 2*g2^12*t^6.58 + (3*t^6.66)/g2^7 + (6*t^6.95)/g2 + 5*g2^5*t^7.24 + t^7.32/g2^14 + (g2^8*t^7.39)/g1^3 + g1^3*g2^8*t^7.39 + 2*g2^11*t^7.53 + (3*t^7.61)/g2^8 + t^7.69/g2^27 + (6*t^7.9)/g2^2 + (2*t^7.98)/g2^21 + (g2*t^8.05)/g1^3 + g1^3*g2*t^8.05 + 5*g2^4*t^8.19 + (3*t^8.27)/g2^15 + (g2^7*t^8.34)/g1^3 + g1^3*g2^7*t^8.34 + t^8.42/(g1^3*g2^12) + (g1^3*t^8.42)/g2^12 + 5*g2^10*t^8.49 + (2*t^8.56)/g2^9 + (g2^13*t^8.63)/g1^3 + g1^3*g2^13*t^8.63 + (2*t^8.71)/(g1^3*g2^6) + (2*g1^3*t^8.71)/g2^6 + 3*g2^16*t^8.78 + t^8.85/g2^3 + t^8.93/g2^22 + t^8.85/(g2^3*y^2) - t^3.95/(g2*y) - t^4.9/(g2^2*y) - (g2^3*t^6.15)/y - t^6.51/(g2^10*y) - (2*t^6.81)/(g2^4*y) - (g2^2*t^7.1)/y - t^7.47/(g2^11*y) - t^7.76/(g2^5*y) + (2*t^8.42)/(g2^12*y) + t^8.71/(g2^6*y) - (t^3.95*y)/g2 - (t^4.9*y)/g2^2 - g2^3*t^6.15*y - (t^6.51*y)/g2^10 - (2*t^6.81*y)/g2^4 - g2^2*t^7.1*y - (t^7.47*y)/g2^11 - (t^7.76*y)/g2^5 + (2*t^8.42*y)/g2^12 + (t^8.71*y)/g2^6 + (t^8.85*y^2)/g2^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57958 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ 1.3636 1.5415 0.8846 [X:[1.4362], M:[0.8458, 0.8458, 0.8458], q:[0.4362, 0.7181], qb:[0.7181, 0.4362], phi:[0.2819]] 4*t^2.54 + t^2.62 + 5*t^4.31 + 10*t^5.07 + 5*t^5.15 + t^5.23 + 2*t^5.62 - 5*t^6. - t^3.85/y - t^4.69/y - t^3.85*y - t^4.69*y detail