Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
60780 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ | 1.4112 | 1.6481 | 0.8563 | [X:[], M:[0.8946], q:[0.3336, 0.4381], qb:[0.6141, 0.4033], phi:[0.3685]] | [X:[], M:[[9]], q:[[-19], [29]], qb:[[-5], [13]], phi:[[-3]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{5}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$ | ${}$ | -1 | 2*t^2.21 + t^2.52 + t^2.68 + t^2.84 + t^3.16 + t^3.32 + t^3.63 + t^3.95 + t^4.26 + 5*t^4.42 + 4*t^4.74 + 2*t^4.89 + 4*t^5.05 + t^5.21 + 5*t^5.37 + 4*t^5.53 + t^5.68 + 5*t^5.84 - t^6. + t^6.15 + 3*t^6.16 + t^6.31 + t^6.32 + 4*t^6.47 + 10*t^6.63 + 2*t^6.79 + 13*t^6.95 + 3*t^7.11 + 13*t^7.26 + 3*t^7.42 + t^7.57 + 13*t^7.58 + t^7.73 + 7*t^7.74 + 7*t^7.89 + 14*t^8.05 - 2*t^8.21 + 7*t^8.36 + 8*t^8.37 + 2*t^8.53 + 12*t^8.68 + 16*t^8.84 - t^4.11/y - t^5.21/y - (2*t^6.32)/y - t^6.63/y - t^6.79/y - t^6.95/y - t^7.26/y - t^7.42/y + t^7.74/y + (2*t^7.89)/y + t^8.05/y + t^8.21/y + (2*t^8.37)/y - t^8.53/y + t^8.68/y + t^8.84/y - t^4.11*y - t^5.21*y - 2*t^6.32*y - t^6.63*y - t^6.79*y - t^6.95*y - t^7.26*y - t^7.42*y + t^7.74*y + 2*t^7.89*y + t^8.05*y + t^8.21*y + 2*t^8.37*y - t^8.53*y + t^8.68*y + t^8.84*y | (2*t^2.21)/g1^6 + g1^42*t^2.52 + g1^9*t^2.68 + t^2.84/g1^24 + g1^24*t^3.16 + t^3.32/g1^9 + g1^39*t^3.63 + t^3.95/g1^27 + g1^21*t^4.26 + (5*t^4.42)/g1^12 + 4*g1^36*t^4.74 + 2*g1^3*t^4.89 + (3*t^5.05)/g1^30 + g1^84*t^5.05 + g1^51*t^5.21 + 5*g1^18*t^5.37 + (4*t^5.53)/g1^15 + g1^66*t^5.68 + 5*g1^33*t^5.84 - t^6. + g1^81*t^6.15 + (3*t^6.16)/g1^33 + g1^48*t^6.31 + t^6.32/g1^66 + 4*g1^15*t^6.47 + (10*t^6.63)/g1^18 + 2*g1^63*t^6.79 + 13*g1^30*t^6.95 + (3*t^7.11)/g1^3 + (7*t^7.26)/g1^36 + 6*g1^78*t^7.26 + 3*g1^45*t^7.42 + g1^126*t^7.57 + 13*g1^12*t^7.58 + g1^93*t^7.73 + (7*t^7.74)/g1^21 + 7*g1^60*t^7.89 + 14*g1^27*t^8.05 - (3*t^8.21)/g1^6 + g1^108*t^8.21 + 7*g1^75*t^8.36 + (8*t^8.37)/g1^39 + (2*t^8.53)/g1^72 + 11*g1^9*t^8.68 + g1^123*t^8.68 + (15*t^8.84)/g1^24 + g1^90*t^8.84 - t^4.11/(g1^3*y) - t^5.21/(g1^6*y) - (2*t^6.32)/(g1^9*y) - (g1^39*t^6.63)/y - (g1^6*t^6.79)/y - t^6.95/(g1^27*y) - (g1^21*t^7.26)/y - t^7.42/(g1^12*y) + (g1^36*t^7.74)/y + (2*g1^3*t^7.89)/y + t^8.05/(g1^30*y) + (g1^51*t^8.21)/y + (2*g1^18*t^8.37)/y - t^8.53/(g1^15*y) + (g1^66*t^8.68)/y + (g1^33*t^8.84)/y - (t^4.11*y)/g1^3 - (t^5.21*y)/g1^6 - (2*t^6.32*y)/g1^9 - g1^39*t^6.63*y - g1^6*t^6.79*y - (t^6.95*y)/g1^27 - g1^21*t^7.26*y - (t^7.42*y)/g1^12 + g1^36*t^7.74*y + 2*g1^3*t^7.89*y + (t^8.05*y)/g1^30 + g1^51*t^8.21*y + 2*g1^18*t^8.37*y - (t^8.53*y)/g1^15 + g1^66*t^8.68*y + g1^33*t^8.84*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57733 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{3}$ | 1.4299 | 1.6663 | 0.8581 | [X:[], M:[0.8964], q:[0.3877, 0.5019], qb:[0.5552, 0.348], phi:[0.3679]] | 2*t^2.21 + t^2.55 + t^2.69 + t^2.83 + t^3.17 + t^3.31 + t^3.65 + t^3.93 + t^4.27 + 4*t^4.41 + 3*t^4.76 + t^4.86 + 2*t^4.9 + t^4.94 + 3*t^5.04 + t^5.1 + t^5.24 + t^5.28 + 4*t^5.38 + t^5.48 + 3*t^5.52 + t^5.72 + 4*t^5.86 + t^5.96 - 2*t^6. - t^4.1/y - t^5.21/y - t^4.1*y - t^5.21*y | detail |