Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
60779 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ 1.4968 1.7308 0.8648 [X:[], M:[0.9847, 0.6733, 0.9811], q:[0.5113, 0.4735], qb:[0.5076, 0.477], phi:[0.3384]] [X:[], M:[[0, -3, 3], [1, 11, -5], [1, 6, 0]], q:[[-1, -12, 0], [1, 0, 0]], qb:[[0, 6, 0], [0, 0, 6]], phi:[[0, 1, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{3}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$ ${}$ -4 t^2.02 + t^2.03 + t^2.85 + 2*t^2.94 + t^2.95 + t^2.96 + t^3.87 + t^3.96 + t^4.04 + t^4.05 + t^4.06 + t^4.07 + t^4.87 + 2*t^4.88 + 2*t^4.96 + 4*t^4.97 + 2*t^4.98 + 2*t^5. + t^5.09 + t^5.39 + t^5.4 + t^5.49 + t^5.5 + t^5.7 + 2*t^5.79 + t^5.81 + t^5.82 + 3*t^5.89 + 3*t^5.9 + 2*t^5.91 + t^5.92 + t^5.93 + t^5.98 + t^5.99 - 4*t^6. + t^6.06 + t^6.07 + t^6.08 + t^6.09 + t^6.1 - t^6.11 + t^6.41 + t^6.42 + t^6.51 + t^6.52 + t^6.72 + 3*t^6.81 + t^6.82 + t^6.83 + t^6.89 + 3*t^6.9 + 3*t^6.91 + t^6.92 + 2*t^6.98 + 4*t^6.99 + 5*t^7. + 2*t^7.02 + 3*t^7.03 + t^7.04 + t^7.12 - t^7.13 + t^7.31 + t^7.34 + t^7.41 + 2*t^7.42 + t^7.43 + t^7.51 + 2*t^7.52 + t^7.53 + t^7.61 + t^7.65 + t^7.72 + 3*t^7.73 + 2*t^7.81 + 7*t^7.83 + 2*t^7.84 + 3*t^7.85 + 3*t^7.91 + 7*t^7.92 + 5*t^7.93 + 6*t^7.94 + 2*t^7.95 + 2*t^7.96 + t^8. + t^8.01 - 3*t^8.02 - 3*t^8.03 + t^8.05 + t^8.08 + t^8.09 + t^8.1 + t^8.11 - t^8.14 + t^8.24 + t^8.25 + t^8.33 + 3*t^8.34 + t^8.35 + 2*t^8.36 + t^8.37 + 2*t^8.44 + 2*t^8.45 + t^8.46 + t^8.47 - t^8.56 - t^8.64 + t^8.65 + t^8.66 + t^8.67 + 3*t^8.74 + 4*t^8.75 + 2*t^8.76 + t^8.77 + t^8.78 + 5*t^8.83 + 8*t^8.84 - t^8.85 + 4*t^8.86 + 2*t^8.87 + t^8.88 + t^8.89 + t^8.91 + 3*t^8.92 + 5*t^8.93 - 5*t^8.94 - t^8.95 - 6*t^8.96 - t^4.02/y - t^5.03/y - t^6.04/y - t^6.05/y - t^6.87/y - (2*t^6.96)/y - t^6.97/y - t^6.98/y - t^7.06/y + t^7.87/y + (2*t^7.96)/y + t^7.97/y + (2*t^7.98)/y + t^8./y - t^8.05/y - t^8.07/y - t^8.08/y + (2*t^8.79)/y + t^8.81/y + t^8.82/y + t^8.89/y + t^8.9/y + (2*t^8.91)/y + t^8.92/y - t^8.98/y - (3*t^8.99)/y - t^4.02*y - t^5.03*y - t^6.04*y - t^6.05*y - t^6.87*y - 2*t^6.96*y - t^6.97*y - t^6.98*y - t^7.06*y + t^7.87*y + 2*t^7.96*y + t^7.97*y + 2*t^7.98*y + t^8.*y - t^8.05*y - t^8.07*y - t^8.08*y + 2*t^8.79*y + t^8.81*y + t^8.82*y + t^8.89*y + t^8.9*y + 2*t^8.91*y + t^8.92*y - t^8.98*y - 3*t^8.99*y (g1*g2^11*t^2.02)/g3^5 + (g2^2*t^2.03)/g3^2 + g1*g3^6*t^2.85 + 2*g1*g2^6*t^2.94 + (g3^3*t^2.95)/g2^3 + (g3^6*t^2.96)/(g1*g2^12) + g1*g2*g3^5*t^3.87 + (g1*g2^7*t^3.96)/g3 + (g1^2*g2^22*t^4.04)/g3^10 + (g1*g2^13*t^4.05)/g3^7 + (g2^4*t^4.06)/g3^4 + t^4.07/(g1*g2^5*g3) + g1^2*g2^11*g3*t^4.87 + 2*g1*g2^2*g3^4*t^4.88 + (2*g1^2*g2^17*t^4.96)/g3^5 + (4*g1*g2^8*t^4.97)/g3^2 + (2*g3*t^4.98)/g2 + (2*g3^4*t^5.)/(g1*g2^10) + t^5.09/(g1*g2^4*g3^2) + (g1*t^5.39)/(g2^11*g3) + g2^7*g3^11*t^5.4 + g2^13*g3^5*t^5.49 + t^5.5/(g1*g2^23*g3) + g1^2*g3^12*t^5.7 + 2*g1^2*g2^6*g3^6*t^5.79 + (g1*g3^9*t^5.81)/g2^3 + (g3^12*t^5.82)/g2^12 + 3*g1^2*g2^12*t^5.89 + 3*g1*g2^3*g3^3*t^5.9 + (2*g3^6*t^5.91)/g2^6 + (g3^9*t^5.92)/(g1*g2^15) + (g3^12*t^5.93)/(g1^2*g2^24) + (g1^2*g2^18*t^5.98)/g3^6 + (g1*g2^9*t^5.99)/g3^3 - 4*t^6. + (g1^3*g2^33*t^6.06)/g3^15 + (g1^2*g2^24*t^6.07)/g3^12 + (g1*g2^15*t^6.08)/g3^9 + (g2^6*t^6.09)/g3^6 + t^6.1/(g1*g2^3*g3^3) - t^6.11/(g1^2*g2^12) + (g1*t^6.41)/(g2^10*g3^2) + g2^8*g3^10*t^6.42 + g2^14*g3^4*t^6.51 + t^6.52/(g1*g2^22*g3^2) + g1^2*g2*g3^11*t^6.72 + 3*g1^2*g2^7*g3^5*t^6.81 + (g1*g3^8*t^6.82)/g2^2 + (g3^11*t^6.83)/g2^11 + (g1^3*g2^22*t^6.89)/g3^4 + (3*g1^2*g2^13*t^6.9)/g3 + 3*g1*g2^4*g3^2*t^6.91 + (g3^5*t^6.92)/g2^5 + (2*g1^3*g2^28*t^6.98)/g3^10 + (4*g1^2*g2^19*t^6.99)/g3^7 + (5*g1*g2^10*t^7.)/g3^4 + (2*g2*t^7.02)/g3 + (3*g3^2*t^7.03)/(g1*g2^8) + (g3^5*t^7.04)/(g1^2*g2^17) + t^7.12/(g1*g2^2*g3^4) - t^7.13/(g1^2*g2^11*g3) + (g1^3*g2^3*t^7.31)/g3^3 + g2^3*g3^15*t^7.34 + (g1^2*t^7.41)/g3^6 + (2*g1*t^7.42)/(g2^9*g3^3) - t^7.43/g2^18 + 2*g2^9*g3^9*t^7.43 + g1*g2^24*t^7.51 + 2*g2^15*g3^3*t^7.52 + (2*t^7.53)/(g1*g2^21*g3^3) - (g2^6*g3^6*t^7.53)/g1 + (g2^21*t^7.61)/g3^3 + t^7.65/(g1^3*g2^33*g3^3) + g1^3*g2^11*g3^7*t^7.72 + 3*g1^2*g2^2*g3^10*t^7.73 + 2*g1^3*g2^17*g3*t^7.81 + 7*g1^2*g2^8*g3^4*t^7.83 + (2*g1*g3^7*t^7.84)/g2 + (3*g3^10*t^7.85)/g2^10 + (3*g1^3*g2^23*t^7.91)/g3^5 + (7*g1^2*g2^14*t^7.92)/g3^2 + 5*g1*g2^5*g3*t^7.93 + (6*g3^4*t^7.94)/g2^4 + (2*g3^7*t^7.95)/(g1*g2^13) + (2*g3^10*t^7.96)/(g1^2*g2^22) + (g1^3*g2^29*t^8.)/g3^11 + (g1^2*g2^20*t^8.01)/g3^8 - (3*g1*g2^11*t^8.02)/g3^5 - (3*g2^2*t^8.03)/g3^2 + (g3^4*t^8.05)/(g1^2*g2^16) + (g1^4*g2^44*t^8.08)/g3^20 + (g1^3*g2^35*t^8.09)/g3^17 + (g1^2*g2^26*t^8.1)/g3^14 + (g1*g2^17*t^8.11)/g3^11 - t^8.14/(g1^2*g2^10*g3^2) + (g1^2*g3^5*t^8.24)/g2^11 + g1*g2^7*g3^17*t^8.25 + (g1^2*t^8.33)/(g2^5*g3) + (g1*g3^2*t^8.34)/g2^14 + 2*g1*g2^13*g3^11*t^8.34 + g2^4*g3^14*t^8.35 + (2*g3^5*t^8.36)/g2^23 + (g3^17*t^8.37)/(g1*g2^5) + (g1*t^8.44)/(g2^8*g3^4) + g1*g2^19*g3^5*t^8.44 + 2*g2^10*g3^8*t^8.45 + (g3^2*t^8.46)/(g1*g2^26) + (g3^5*t^8.47)/(g1^2*g2^35) - t^8.54/(g2^11*g3^7) + g2^16*g3^2*t^8.54 + t^8.55/(g1*g2^20*g3^4) - (2*g2^7*g3^5*t^8.55)/g1 + g1^3*g3^18*t^8.55 - t^8.56/(g1^2*g2^29*g3) - (g2^13*t^8.64)/(g1*g3) - t^8.65/(g1^2*g2^23*g3^7) + 2*g1^3*g2^6*g3^12*t^8.65 + (g1^2*g3^15*t^8.66)/g2^3 + (g1*g3^18*t^8.67)/g2^12 + 3*g1^3*g2^12*g3^6*t^8.74 + 4*g1^2*g2^3*g3^9*t^8.75 + (2*g1*g3^12*t^8.76)/g2^6 + (g3^15*t^8.77)/g2^15 + (g3^18*t^8.78)/(g1*g2^24) + 5*g1^3*g2^18*t^8.83 + 8*g1^2*g2^9*g3^3*t^8.84 - g1*g3^6*t^8.85 + (4*g3^9*t^8.86)/g2^9 + (2*g3^12*t^8.87)/(g1*g2^18) + (g3^15*t^8.88)/(g1^2*g2^27) + (g3^18*t^8.89)/(g1^3*g2^36) + (g1^4*g2^33*t^8.91)/g3^9 + (3*g1^3*g2^24*t^8.92)/g3^6 + (5*g1^2*g2^15*t^8.93)/g3^3 - 5*g1*g2^6*t^8.94 - (g3^3*t^8.95)/g2^3 - (6*g3^6*t^8.96)/(g1*g2^12) - (g2*t^4.02)/(g3*y) - (g2^2*t^5.03)/(g3^2*y) - (g1*g2^12*t^6.04)/(g3^6*y) - (g2^3*t^6.05)/(g3^3*y) - (g1*g2*g3^5*t^6.87)/y - (2*g1*g2^7*t^6.96)/(g3*y) - (g3^2*t^6.97)/(g2^2*y) - (g3^5*t^6.98)/(g1*g2^11*y) - (g2^4*t^7.06)/(g3^4*y) + (g1^2*g2^11*g3*t^7.87)/y + (2*g1^2*g2^17*t^7.96)/(g3^5*y) + (g1*g2^8*t^7.97)/(g3^2*y) + (2*g3*t^7.98)/(g2*y) + (g3^4*t^8.)/(g1*g2^10*y) - (g1^2*g2^23*t^8.05)/(g3^11*y) - (g1*g2^14*t^8.07)/(g3^8*y) - (g2^5*t^8.08)/(g3^5*y) + (2*g1^2*g2^6*g3^6*t^8.79)/y + (g1*g3^9*t^8.81)/(g2^3*y) + (g3^12*t^8.82)/(g2^12*y) + (g1^2*g2^12*t^8.89)/y + (g1*g2^3*g3^3*t^8.9)/y + (2*g3^6*t^8.91)/(g2^6*y) + (g3^9*t^8.92)/(g1*g2^15*y) - (g1^2*g2^18*t^8.98)/(g3^6*y) - (3*g1*g2^9*t^8.99)/(g3^3*y) - (g2*t^4.02*y)/g3 - (g2^2*t^5.03*y)/g3^2 - (g1*g2^12*t^6.04*y)/g3^6 - (g2^3*t^6.05*y)/g3^3 - g1*g2*g3^5*t^6.87*y - (2*g1*g2^7*t^6.96*y)/g3 - (g3^2*t^6.97*y)/g2^2 - (g3^5*t^6.98*y)/(g1*g2^11) - (g2^4*t^7.06*y)/g3^4 + g1^2*g2^11*g3*t^7.87*y + (2*g1^2*g2^17*t^7.96*y)/g3^5 + (g1*g2^8*t^7.97*y)/g3^2 + (2*g3*t^7.98*y)/g2 + (g3^4*t^8.*y)/(g1*g2^10) - (g1^2*g2^23*t^8.05*y)/g3^11 - (g1*g2^14*t^8.07*y)/g3^8 - (g2^5*t^8.08*y)/g3^5 + 2*g1^2*g2^6*g3^6*t^8.79*y + (g1*g3^9*t^8.81*y)/g2^3 + (g3^12*t^8.82*y)/g2^12 + g1^2*g2^12*t^8.89*y + g1*g2^3*g3^3*t^8.9*y + (2*g3^6*t^8.91*y)/g2^6 + (g3^9*t^8.92*y)/(g1*g2^15) - (g1^2*g2^18*t^8.98*y)/g3^6 - (3*g1*g2^9*t^8.99*y)/g3^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
61099 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ 1.4967 1.7307 0.8648 [X:[], M:[0.9835, 0.6777, 0.9835], q:[0.5083, 0.4752], qb:[0.5083, 0.4752], phi:[0.3388]] 2*t^2.03 + t^2.85 + 4*t^2.95 + t^3.87 + t^3.97 + 4*t^4.07 + 3*t^4.88 + 10*t^4.98 + t^5.08 + 2*t^5.39 + 2*t^5.49 + t^5.7 + 4*t^5.8 + 10*t^5.9 - 2*t^6. - t^4.02/y - t^5.03/y - t^4.02*y - t^5.03*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57493 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ 1.4958 1.7274 0.8659 [X:[], M:[0.9861, 0.6877], q:[0.4952, 0.4907], qb:[0.5071, 0.4792], phi:[0.338]] t^2.03 + t^2.06 + t^2.91 + t^2.92 + t^2.96 + t^2.99 + t^3.01 + t^3.92 + t^4.01 + t^4.02 + t^4.06 + t^4.09 + t^4.13 + 2*t^4.94 + 2*t^4.95 + t^4.97 + 2*t^4.99 + 3*t^5.02 + 2*t^5.03 + t^5.06 + t^5.07 + t^5.41 + t^5.44 + t^5.46 + t^5.49 + t^5.82 + t^5.83 + t^5.85 + t^5.87 + t^5.88 + t^5.9 + 2*t^5.92 + t^5.93 + 2*t^5.95 + t^5.96 + t^5.99 - 3*t^6. - t^4.01/y - t^5.03/y - t^4.01*y - t^5.03*y detail