Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
6077 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{5}M_{8}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{9}\phi_{1}q_{2}\tilde{q}_{1}$ | 0.7033 | 0.9109 | 0.7722 | [M:[1.0445, 0.8784, 1.1216, 0.8012, 1.1988, 0.724, 0.7953, 0.8012, 0.7181], q:[0.5164, 0.4392], qb:[0.362, 0.7596], phi:[0.4807]] | [M:[[-38], [14], [-14], [-10], [10], [-34], [40], [-10], [16]], q:[[31], [7]], qb:[[-17], [3]], phi:[[-6]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{9}$, ${ }M_{6}$, ${ }M_{7}$, ${ }M_{4}$, ${ }M_{8}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{9}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{6}M_{9}$, ${ }M_{6}^{2}$, ${ }M_{7}M_{9}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{6}M_{7}$, ${ }M_{4}M_{9}$, ${ }M_{8}M_{9}$, ${ }M_{4}M_{6}$, ${ }M_{6}M_{8}$, ${ }M_{7}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{7}M_{8}$, ${ }M_{2}M_{9}$, ${ }M_{4}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{4}M_{8}$, ${ }M_{8}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}M_{7}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{8}$, ${ }M_{9}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{9}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{1}M_{7}$, ${ }M_{3}M_{9}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{6}$, ${ }M_{1}M_{8}$, ${ }M_{3}M_{7}$, ${ }M_{1}M_{2}$, ${ }M_{3}M_{4}$, ${ }M_{3}M_{8}$, ${ }\phi_{1}^{4}$ | ${}$ | -2 | t^2.154 + t^2.172 + t^2.386 + 2*t^2.404 + t^2.635 + t^2.884 + t^3.133 + t^3.365 + 2*t^4.077 + 2*t^4.309 + t^4.326 + t^4.344 + 2*t^4.54 + 3*t^4.558 + 2*t^4.575 + t^4.772 + 3*t^4.789 + 4*t^4.807 + t^5.021 + 3*t^5.039 + t^5.056 + 2*t^5.27 + 3*t^5.288 + t^5.305 + 3*t^5.519 + 2*t^5.537 + t^5.751 + 2*t^5.768 - 2*t^6. + t^6.018 - t^6.232 + 2*t^6.249 + t^6.267 + 3*t^6.463 + 4*t^6.481 + 2*t^6.498 + t^6.516 + 3*t^6.695 + 6*t^6.712 + 2*t^6.73 + 2*t^6.747 + 2*t^6.926 + 6*t^6.944 + 6*t^6.961 + 3*t^6.979 + t^7.158 + 4*t^7.175 + 5*t^7.193 + 6*t^7.211 + t^7.228 + t^7.407 + 4*t^7.425 + 7*t^7.442 + 3*t^7.46 + t^7.477 + t^7.656 + 5*t^7.674 + 6*t^7.691 + 2*t^7.709 + 2*t^7.905 + 4*t^7.923 + 3*t^7.94 + t^8.154 + t^8.172 + t^8.19 - 3*t^8.386 - 4*t^8.404 + 4*t^8.421 + t^8.439 + 2*t^8.617 - 3*t^8.635 + 6*t^8.653 + 3*t^8.67 + t^8.688 + 5*t^8.849 + 4*t^8.867 + 5*t^8.884 + 4*t^8.902 + 2*t^8.919 - t^4.442/y - t^6.596/y - t^6.614/y - t^6.828/y - t^6.846/y + t^7.309/y + t^7.54/y + (4*t^7.558)/y + t^7.575/y + (3*t^7.789)/y + (2*t^7.807)/y + t^8.021/y + (4*t^8.039)/y + (2*t^8.056)/y + (2*t^8.27)/y + (4*t^8.288)/y + t^8.305/y + (3*t^8.519)/y + (3*t^8.537)/y + (2*t^8.768)/y - t^8.786/y - t^8.982/y - t^4.442*y - t^6.596*y - t^6.614*y - t^6.828*y - t^6.846*y + t^7.309*y + t^7.54*y + 4*t^7.558*y + t^7.575*y + 3*t^7.789*y + 2*t^7.807*y + t^8.021*y + 4*t^8.039*y + 2*t^8.056*y + 2*t^8.27*y + 4*t^8.288*y + t^8.305*y + 3*t^8.519*y + 3*t^8.537*y + 2*t^8.768*y - t^8.786*y - t^8.982*y | g1^16*t^2.154 + t^2.172/g1^34 + g1^40*t^2.386 + (2*t^2.404)/g1^10 + g1^14*t^2.635 + t^2.884/g1^12 + t^3.133/g1^38 + t^3.365/g1^14 + 2*g1^8*t^4.077 + 2*g1^32*t^4.309 + t^4.326/g1^18 + t^4.344/g1^68 + 2*g1^56*t^4.54 + 3*g1^6*t^4.558 + (2*t^4.575)/g1^44 + g1^80*t^4.772 + 3*g1^30*t^4.789 + (4*t^4.807)/g1^20 + g1^54*t^5.021 + 3*g1^4*t^5.039 + t^5.056/g1^46 + 2*g1^28*t^5.27 + (3*t^5.288)/g1^22 + t^5.305/g1^72 + 3*g1^2*t^5.519 + (2*t^5.537)/g1^48 + g1^26*t^5.751 + (2*t^5.768)/g1^24 - 2*t^6. + t^6.018/g1^50 - g1^24*t^6.232 + (2*t^6.249)/g1^26 + t^6.267/g1^76 + 3*g1^48*t^6.463 + (4*t^6.481)/g1^2 + (2*t^6.498)/g1^52 + t^6.516/g1^102 + 3*g1^72*t^6.695 + 6*g1^22*t^6.712 + (2*t^6.73)/g1^28 + (2*t^6.747)/g1^78 + 2*g1^96*t^6.926 + 6*g1^46*t^6.944 + (6*t^6.961)/g1^4 + (3*t^6.979)/g1^54 + g1^120*t^7.158 + 4*g1^70*t^7.175 + 5*g1^20*t^7.193 + (6*t^7.211)/g1^30 + t^7.228/g1^80 + g1^94*t^7.407 + 4*g1^44*t^7.425 + (7*t^7.442)/g1^6 + (3*t^7.46)/g1^56 + t^7.477/g1^106 + g1^68*t^7.656 + 5*g1^18*t^7.674 + (6*t^7.691)/g1^32 + (2*t^7.709)/g1^82 + 2*g1^42*t^7.905 + (4*t^7.923)/g1^8 + (3*t^7.94)/g1^58 + g1^16*t^8.154 + t^8.172/g1^34 + t^8.19/g1^84 - 3*g1^40*t^8.386 - (4*t^8.404)/g1^10 + (4*t^8.421)/g1^60 + t^8.439/g1^110 + 2*g1^64*t^8.617 - 3*g1^14*t^8.635 + (6*t^8.653)/g1^36 + (3*t^8.67)/g1^86 + t^8.688/g1^136 + 5*g1^88*t^8.849 + 4*g1^38*t^8.867 + (5*t^8.884)/g1^12 + (4*t^8.902)/g1^62 + (2*t^8.919)/g1^112 - t^4.442/(g1^6*y) - (g1^10*t^6.596)/y - t^6.614/(g1^40*y) - (g1^34*t^6.828)/y - t^6.846/(g1^16*y) + (g1^32*t^7.309)/y + (g1^56*t^7.54)/y + (4*g1^6*t^7.558)/y + t^7.575/(g1^44*y) + (3*g1^30*t^7.789)/y + (2*t^7.807)/(g1^20*y) + (g1^54*t^8.021)/y + (4*g1^4*t^8.039)/y + (2*t^8.056)/(g1^46*y) + (2*g1^28*t^8.27)/y + (4*t^8.288)/(g1^22*y) + t^8.305/(g1^72*y) + (3*g1^2*t^8.519)/y + (3*t^8.537)/(g1^48*y) + (2*t^8.768)/(g1^24*y) - t^8.786/(g1^74*y) - (g1^50*t^8.982)/y - (t^4.442*y)/g1^6 - g1^10*t^6.596*y - (t^6.614*y)/g1^40 - g1^34*t^6.828*y - (t^6.846*y)/g1^16 + g1^32*t^7.309*y + g1^56*t^7.54*y + 4*g1^6*t^7.558*y + (t^7.575*y)/g1^44 + 3*g1^30*t^7.789*y + (2*t^7.807*y)/g1^20 + g1^54*t^8.021*y + 4*g1^4*t^8.039*y + (2*t^8.056*y)/g1^46 + 2*g1^28*t^8.27*y + (4*t^8.288*y)/g1^22 + (t^8.305*y)/g1^72 + 3*g1^2*t^8.519*y + (3*t^8.537*y)/g1^48 + (2*t^8.768*y)/g1^24 - (t^8.786*y)/g1^74 - g1^50*t^8.982*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
4561 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{5}M_{8}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ | 0.6832 | 0.8732 | 0.7824 | [M:[1.0397, 0.8801, 1.1199, 0.7999, 1.2001, 0.7197, 0.8003, 0.7999], q:[0.5203, 0.4401], qb:[0.3599, 0.76], phi:[0.4799]] | t^2.159 + 2*t^2.4 + t^2.401 + t^2.64 + t^2.88 + t^3.119 + t^3.36 + t^3.84 + 2*t^4.08 + t^4.318 + t^4.321 + 2*t^4.559 + t^4.56 + t^4.561 + 4*t^4.799 + 2*t^4.801 + t^4.802 + t^5.039 + 2*t^5.04 + t^5.041 + t^5.278 + 2*t^5.279 + 2*t^5.281 + 2*t^5.519 + 2*t^5.52 + 2*t^5.759 + t^5.761 + 2*t^5.999 - 2*t^6. - t^4.44/y - t^4.44*y | detail |