Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
6073 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{3}M_{8}$ + ${ }M_{1}M_{7}$ + ${ }M_{6}X_{1}$ + ${ }M_{9}\phi_{1}q_{2}\tilde{q}_{1}$ | 0.6059 | 0.7845 | 0.7724 | [X:[1.3288], M:[1.1569, 0.7858, 1.2142, 0.7285, 1.2715, 0.6712, 0.8431, 0.7858, 0.7858], q:[0.4502, 0.3929], qb:[0.3356, 0.8786], phi:[0.4857]] | [X:[[22]], M:[[-26], [10], [-10], [-6], [6], [-22], [26], [10], [10]], q:[[21], [5]], qb:[[-11], [1]], phi:[[-4]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{4}$, ${ }M_{2}$, ${ }M_{8}$, ${ }M_{9}$, ${ }M_{7}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }M_{5}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{4}M_{8}$, ${ }M_{4}M_{9}$, ${ }M_{2}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{2}M_{8}$, ${ }M_{8}^{2}$, ${ }M_{2}M_{9}$, ${ }M_{8}M_{9}$, ${ }M_{9}^{2}$, ${ }M_{2}M_{7}$, ${ }M_{7}M_{8}$, ${ }M_{7}M_{9}$, ${ }M_{7}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }M_{9}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}M_{8}$, ${ }M_{1}M_{9}$, ${ }\phi_{1}^{4}$ | ${}M_{4}\phi_{1}q_{2}^{2}$, ${ }M_{4}\phi_{1}q_{1}\tilde{q}_{1}$ | -2 | t^2.186 + 3*t^2.357 + t^2.529 + t^2.914 + t^3.471 + 3*t^3.814 + 2*t^3.986 + t^4.158 + 2*t^4.543 + 6*t^4.715 + 3*t^4.887 + t^5.058 + 2*t^5.1 + 4*t^5.271 + 2*t^5.443 + t^5.828 - 2*t^6. + 6*t^6.172 + 8*t^6.344 + t^6.385 + 5*t^6.516 - t^6.557 + t^6.687 + 3*t^6.729 + 3*t^6.9 + t^6.942 + 9*t^7.072 - t^7.113 + 5*t^7.244 - t^7.285 + 3*t^7.416 + t^7.457 + t^7.588 + 10*t^7.629 + 9*t^7.801 - t^7.842 + 6*t^7.973 + 2*t^8.144 - 3*t^8.186 + t^8.316 - 11*t^8.357 + 2*t^8.529 + t^8.57 + 13*t^8.701 - t^8.742 + 13*t^8.873 - 4*t^8.914 - t^4.457/y - (2*t^6.814)/y - t^7.371/y + (4*t^7.543)/y + (4*t^7.715)/y + (3*t^7.887)/y + (3*t^8.1)/y + (3*t^8.271)/y + t^8.443/y + t^8.656/y + (3*t^8.828)/y - t^4.457*y - 2*t^6.814*y - t^7.371*y + 4*t^7.543*y + 4*t^7.715*y + 3*t^7.887*y + 3*t^8.1*y + 3*t^8.271*y + t^8.443*y + t^8.656*y + 3*t^8.828*y | t^2.186/g1^6 + 3*g1^10*t^2.357 + g1^26*t^2.529 + t^2.914/g1^8 + t^3.471/g1^26 + 3*g1^6*t^3.814 + 2*g1^22*t^3.986 + g1^38*t^4.158 + 2*g1^4*t^4.543 + 6*g1^20*t^4.715 + 3*g1^36*t^4.887 + g1^52*t^5.058 + (2*t^5.1)/g1^14 + 4*g1^2*t^5.271 + 2*g1^18*t^5.443 + t^5.828/g1^16 - 2*t^6. + 6*g1^16*t^6.172 + 8*g1^32*t^6.344 + t^6.385/g1^34 + 5*g1^48*t^6.516 - t^6.557/g1^18 + g1^64*t^6.687 + (3*t^6.729)/g1^2 + 3*g1^14*t^6.9 + t^6.942/g1^52 + 9*g1^30*t^7.072 - t^7.113/g1^36 + 5*g1^46*t^7.244 - t^7.285/g1^20 + 3*g1^62*t^7.416 + t^7.457/g1^4 + g1^78*t^7.588 + 10*g1^12*t^7.629 + 9*g1^28*t^7.801 - t^7.842/g1^38 + 6*g1^44*t^7.973 + 2*g1^60*t^8.144 - (3*t^8.186)/g1^6 + g1^76*t^8.316 - 11*g1^10*t^8.357 + 2*g1^26*t^8.529 + t^8.57/g1^40 + 13*g1^42*t^8.701 - t^8.742/g1^24 + 13*g1^58*t^8.873 - (4*t^8.914)/g1^8 - t^4.457/(g1^4*y) - (2*g1^6*t^6.814)/y - t^7.371/(g1^12*y) + (4*g1^4*t^7.543)/y + (4*g1^20*t^7.715)/y + (3*g1^36*t^7.887)/y + (3*t^8.1)/(g1^14*y) + (3*g1^2*t^8.271)/y + (g1^18*t^8.443)/y + t^8.656/(g1^32*y) + (3*t^8.828)/(g1^16*y) - (t^4.457*y)/g1^4 - 2*g1^6*t^6.814*y - (t^7.371*y)/g1^12 + 4*g1^4*t^7.543*y + 4*g1^20*t^7.715*y + 3*g1^36*t^7.887*y + (3*t^8.1*y)/g1^14 + 3*g1^2*t^8.271*y + g1^18*t^8.443*y + (t^8.656*y)/g1^32 + (3*t^8.828*y)/g1^16 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
4566 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{3}M_{8}$ + ${ }M_{1}M_{7}$ + ${ }M_{6}X_{1}$ | 0.5887 | 0.7531 | 0.7818 | [X:[1.3387], M:[1.1451, 0.7903, 1.2097, 0.7258, 1.2742, 0.6613, 0.8549, 0.7903], q:[0.4597, 0.3952], qb:[0.3306, 0.879], phi:[0.4839]] | t^2.177 + 2*t^2.371 + t^2.565 + t^2.903 + t^3.435 + t^3.629 + 3*t^3.823 + 2*t^4.016 + t^4.21 + t^4.548 + 3*t^4.742 + 2*t^4.936 + 2*t^5.081 + t^5.129 + 3*t^5.274 + 2*t^5.468 + t^5.806 - t^4.452/y - t^4.452*y | detail |